On Laguerre-Sobolev matrix orthogonal polynomials

被引:0
作者
Fuentes, Edinson [1 ]
Garza, Luis E. [2 ]
Saiz, Martha L. [3 ]
机构
[1] Univ Los Llanos, Fac Ciencias Bas Ingn, Villavicencio, Colombia
[2] Univ Colima, Fac Ciencias, Colima, Mexico
[3] Univ Pedag & Tecnol Colombia, Fac Estudios Distancia, Tunja, Colombia
来源
OPEN MATHEMATICS | 2024年 / 22卷 / 01期
关键词
matrix orthogonal polynomials; Laguerre-Sobolev polynomials; ASYMPTOTICS;
D O I
10.1515/math-2024-0029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, we study some algebraic and differential properties of matrix orthogonal polynomials with respect to the Laguerre-Sobolev right sesquilinear form defined by < p , q > S & colone; integral 0 infinity p * ( x ) W L A ( x ) q ( x ) d x + M integral 0 infinity ( p ' ( x ) ) * W ( x ) q ' ( x ) d x , {\langle p,q\rangle }_{{\bf{S}}}:= \underset{0}{\overset{\infty }{\int }}{p}<^>{* }\left(x){{\bf{W}}}_{{\bf{L}}}<^>{{\bf{A}}}\left(x)q\left(x){\rm{d}}x+{\bf{M}}\underset{0}{\overset{\infty }{\int }}{(p<^>{\prime} \left(x))}<^>{* }{\bf{W}}\left(x)q<^>{\prime} \left(x){\rm{d}}x, where W L A ( x ) = e - lambda x x A {{\bf{W}}}_{{\bf{L}}}<^>{{\bf{A}}}\left(x)={e}<^>{-\lambda x}{x}<^>{{\bf{A}}} is the Laguerre matrix weight, W {\bf{W}} is some matrix weight, p p and q q are the matrix polynomials, M {\bf{M}} and A {\bf{A}} are the matrices such that M {\bf{M}} is non-singular and A {\bf{A}} satisfies a spectral condition, and lambda \lambda is a complex number with positive real part.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A COHEN-TYPE INEQUALITY FOR FOURIER EXPANSIONS WITH RESPECT TO NON-DISCRETE LAGUERRE-SOBOLEV INNER PRODUCT
    Fejzullahu, Bujar Xh.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (12) : 1330 - 1341
  • [32] A new approach to the asymptotics of Sobolev type orthogonal polynomials
    Alfaro, M.
    Moreno-Balcazar, J. J.
    Pena, A.
    Rezola, M. L.
    JOURNAL OF APPROXIMATION THEORY, 2011, 163 (04) : 460 - 480
  • [33] Asymptotics and Zeros of Sobolev Orthogonal Polynomials on Unbounded Supports
    Francisco Marcellán
    Juan José Moreno Balcázar
    Acta Applicandae Mathematica, 2006, 94 : 163 - 192
  • [34] On asymptotic properties of Freud-Sobolev orthogonal polynomials
    Cachafeiro, A
    Marcellán, F
    Moreno-Balcázar, JJ
    JOURNAL OF APPROXIMATION THEORY, 2003, 125 (01) : 26 - 41
  • [35] Strong asymptotics for Gegenbauer-Sobolev orthogonal polynomials
    MartinezFinkelshtein, A
    MorenoBalcazar, JJ
    PijeiraCabrera, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 81 (02) : 211 - 216
  • [36] Sobolev-type orthogonal polynomials on the unit ball
    Delgado, Antonia M.
    Perez, Teresa E.
    Pinar, Miguel A.
    JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 94 - 106
  • [37] Asymptotics of Sobolev orthogonal polynomials for Hermite coherent pairs
    Alfaro, M
    Moreno-Balcázar, JJ
    Pérez, TE
    Piñar, MA
    Rezola, ML
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) : 141 - 150
  • [38] Asymptotics and zeros of Sobolev orthogonal polynomials on unbounded supports
    Marcellan, Francisco
    Jose Moreno Balcazar, Juan
    ACTA APPLICANDAE MATHEMATICAE, 2006, 94 (02) : 163 - 192
  • [39] The growth of Laguerre matrix polynomials on bounded intervals
    Jódar, L
    Sastre, J
    APPLIED MATHEMATICS LETTERS, 2000, 13 (08) : 21 - 26
  • [40] Asymptotics of Sobolev orthogonal polynomials for coherent pairs of measures
    Martinez-Finkelshtein, A
    Moreno-Balcazar, JJ
    Perez, TE
    Pinar, MA
    JOURNAL OF APPROXIMATION THEORY, 1998, 92 (02) : 280 - 293