Negative longitudinal resistance of monolayer graphene in the quantum Hall regime

被引:1
作者
Kaverzin, Alexey A. [1 ,2 ]
Daimon, Shunsuke [1 ,2 ,3 ]
Kikkawa, Takashi [1 ]
Ohtsuki, Tomi [4 ]
Saitoh, Eiji [1 ,2 ,5 ]
机构
[1] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan
[2] Univ Tokyo, Inst AI & Beyond, Tokyo 1138656, Japan
[3] Natl Inst Quantum Sci & Technol, Quantum Mat & Applicat Res Ctr, Tokyo 1528552, Japan
[4] Sophia Univ, Phys Div, Chiyoda Ku, Tokyo 1028554, Japan
[5] Tohoku Univ, WPI Adv Inst Mat Res, Sendai 9808577, Japan
关键词
COMPOSITE FERMIONS; BALLISTIC TRANSPORT; STATES; BEND;
D O I
10.1063/5.0207235
中图分类号
O59 [应用物理学];
学科分类号
摘要
In the quantum Hall regime, the charge current is carried by ideal one-dimensional edge channels where the backscattering is prohibited by topology. This results in the constant potential along the edge of the Hall bar leading to zero 4-terminal longitudinal resistance r(xx). Finite scattering between the counter-propagating edge states, when the topological protection is broken, commonly results in r(xx) > 0. However, a local disorder, if allowing intersection of the edge states, can result in a counter-intuitive scenario when r(xx) < 0. In this work, we report the observation and a systematic study of such unconventional negative longitudinal resistance seen in an encapsulated monolayer graphene Hall bar device measured in the quantum Hall regime. We supplement our findings with the numerical calculations, which allow us to outline the conditions necessary for the appearance of negative r(xx) and to exclude the macroscopic disorder (contamination bubble) as the main origin of it.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Coherent tunnelling across a quantum point contact in the quantum Hall regime
    Martins, F.
    Faniel, S.
    Rosenow, B.
    Sellier, H.
    Huant, S.
    Pala, M. G.
    Desplanque, L.
    Wallart, X.
    Bayot, V.
    Hackens, B.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [22] Topological invariant for the orbital spin of the electrons in the quantum Hall regime and Hall viscosity
    Gurarie, V.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (07)
  • [23] Topological Josephson junctions in the integer quantum Hall regime
    Blasi, Gianmichele
    Haack, Geraldine
    Giovannetti, Vittorio
    Taddei, Fabio
    Braggio, Alessandro
    [J]. PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [24] Effect of Strain on Stripe Phases in the Quantum Hall Regime
    Koduvayur, Sunanda P.
    Lyanda-Geller, Yuli
    Khlebnikov, Sergei
    Csathy, Gabor
    Manfra, Michael J.
    Pfeiffer, Loren N.
    West, Kenneth W.
    Rokhinson, Leonid P.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (01)
  • [25] Helical edge magnetoplasmon in the quantum Hall effect regime
    Silva, Sanderson
    Balev, O. G.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 107 (10)
  • [26] Spin transition in the fractional quantum Hall regime: Effect of the extent of the wave function
    Vanovsky, V. V.
    Khrapai, V. S.
    Shashkin, A. A.
    Pellegrini, V.
    Sorba, L.
    Biasiol, G.
    [J]. PHYSICAL REVIEW B, 2013, 87 (08):
  • [27] Dynamic Nuclear Polarization in the Fractional Quantum Hall Regime
    Kou, A.
    McClure, D. T.
    Marcus, C. M.
    Pfeiffer, L. N.
    West, K. W.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (05)
  • [28] DYNAMICAL GAPS AND QUANTUM HALL EFFECT IN GRAPHENE
    Gorbar, E. V.
    Gusynin, V. P.
    Miransky, V. A.
    [J]. MODERN PHYSICS LETTERS B, 2009, 23 (07): : 891 - 902
  • [29] Quantum Hall effect in gapped graphene heterojunctions
    Lado, J. L.
    Gonzalez, J. W.
    Fernandez-Rossier, J.
    [J]. PHYSICAL REVIEW B, 2013, 88 (03)
  • [30] Quantum spin Hall phase in multilayer graphene
    Garcia-Martinez, N. A.
    Lado, J. L.
    Fernandez-Rossier, J.
    [J]. PHYSICAL REVIEW B, 2015, 91 (23)