Orthogonal multi-peak solitons from the coupled fractional nonlinear Schrödinger equation

被引:2
作者
dos Santos, Mateus C. P. [1 ]
机构
[1] Fed Inst Maranhao IFMA PPGEM, BR-65030005 Sao Luis, Maranhao, Brazil
关键词
Multi-peak solitons; L & eacute; vy index; Nonlinear fractional Schr & ouml; dinger equations; Linear stability analysis; SCHRODINGER-EQUATION; DISCRETE SOLITONS; BRIGHT SOLITONS; GAP SOLITONS; DYNAMICS; DARK;
D O I
10.1016/j.chaos.2024.114916
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the dynamics and stability of multi -peak solitons from the coupled nonlinear Schr & ouml;dinger equation with the fractional dimension based on L & eacute;vy random flights. By implementing linear stability analysis and direct simulations, we demonstrate regions where the single and multi -peak modes are stable. Analysis of perturbed coupled solitons confirms the stability of higher -order modes compared to lower -order modes under the same configurations. The stability diagrams show that the force coupling, L & eacute;vy index, power, and the nonlinear intensity significantly influence the stability of high -order modes. Our findings indicate that stability is favored in self -defocusing systems with high L & eacute;vy indices under weak coupling conditions, with higher -order states exhibiting smaller stability regions.
引用
收藏
页数:8
相关论文
共 51 条
[21]   Fractional Schrodinger equation [J].
Laskin, N .
PHYSICAL REVIEW E, 2002, 66 (05) :7-056108
[22]   Fractional quantum mechanics and Levy path integrals [J].
Laskin, N .
PHYSICS LETTERS A, 2000, 268 (4-6) :298-305
[23]   Discrete solitons in optics [J].
Lederer, Falk ;
Stegeman, George I. ;
Christodoulides, Demetri N. ;
Assanto, Gaetano ;
Segev, Moti ;
Silberberg, Yaron .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 463 (1-3) :1-126
[24]   Time dependent solutions for fractional coupled Schrodinger equations [J].
Lenzi, E. K. ;
de Castro, A. S. M. ;
Mendes, R. S. .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 :622-632
[25]   Metastable soliton necklaces supported by fractional diffraction and competing nonlinearities [J].
Li, Pengfei ;
Malomed, Boris A. ;
Mihalache, Dumitru .
OPTICS EXPRESS, 2020, 28 (23) :34472-34488
[26]   Vortex solitons in fractional nonlinear Schrodinger equation with the cubic-quintic nonlinearity [J].
Li, Pengfei ;
Malomed, Boris A. ;
Mihalache, Dumitru .
CHAOS SOLITONS & FRACTALS, 2020, 137
[27]   Bright solitons in fractional coupler with spatially periodical modulated nonlinearity [J].
Li, S. R. ;
Bao, Y. Y. ;
Liu, Y. H. ;
Xu, T. F. .
CHAOS SOLITONS & FRACTALS, 2022, 162
[28]   Study on propagation properties of fractional soliton in the inhomogeneous fiber with higher-order effects [J].
Liu, Muwei ;
Wang, Haotian ;
Yang, Hujiang ;
Liu, Wenjun .
NONLINEAR DYNAMICS, 2024, 112 (02) :1327-1337
[29]   Experimental realisations of the fractional Schrodinger equation in the temporal domain [J].
Liu, Shilong ;
Zhang, Yingwen ;
Malomed, Boris A. A. ;
Karimi, Ebrahim .
NATURE COMMUNICATIONS, 2023, 14 (01)
[30]   Fractional Schrodinger equation in optics [J].
Longhi, Stefano .
OPTICS LETTERS, 2015, 40 (06) :1117-1120