A multi-scale experimental investigation on fatigue crack propagation rate behavior of powder bed fusion-laser beam 316L stainless steel subjected to various heat treatments

被引:4
|
作者
Zhu, Wen [1 ]
Moumni, Ziad [1 ,2 ]
Zhu, Jihong [1 ,3 ]
Zhang, Yahui [1 ]
You, Yajun [4 ]
Zhang, Weihong [1 ]
机构
[1] Northwestern Polytech Univ, State IJR Ctr Aerosp Design & Addit Mfg, Xian 710072, Peoples R China
[2] Inst Polytech Paris, LMI UME, ENSTA Paris, F-91120 Palaiseau, France
[3] Northwestern Polytech Univ, MIIT Lab Met Addit Mfg & Innovat Design, Xian 710072, Peoples R China
[4] North Univ China, Sch Aerosp Engn, Taiyuan 030051, Peoples R China
基金
中国国家自然科学基金;
关键词
Powder bed fusion-laser beam 316L stainless steel; Heat treatment; Microstructural evolutions; Fatigue crack propagation rate behavior; Fatigue life; MECHANICAL-PROPERTIES; ACOUSTIC-EMISSION; GROWTH-BEHAVIOR; MICROSTRUCTURE; STRESS; AUSTENITE; FUTURE;
D O I
10.1016/j.engfracmech.2024.110064
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, three heat treatments referred to as heat treatment 1 (HT1), HT2, and HT3 were applied to tune the microstructure of powder bed fusion -laser beam (PBF-LB) 316L stainless steel. Furthermore, the fatigue crack propagation rate (FCPR) of as -built PBF-LB 316L specimens and specimens subjected to the three aforementioned heat treatments was thoroughly investigated. To this end, the FCPR was evaluated by a fatigue testing machine combined with an infrared thermal camera, and the Paris law was established to quantitatively assess the FCPR of PBF-LB 316L. In addition, a systematic investigation of microstructural evolution, residual stress, tensile properties, and fatigue crack propagation (FCP) fracture surfaces as well as their effect on the FCPR in function of various heat treatments were carried out. The results indicate that the release of residual stresses, the annihilation of the cellular structure, and the occurrence of recrystallization are obtained through the application of HT1, HT2, and HT3 respectively. Furthermore, it is shown that although all three heat treatments can improve the FCPR behavior of PBF-LB 316L to some extent, HT3 PBF-LB 316L presents the lowest FCPR mainly due to its most pronounced plasticityinduced crack closure effect, indicating its highest resistance to FCP even though the recrystallization obtained by HT3 results in the lowest yield strength (YS). Finally, some recommendations about adequate heat treatments concerning fatigue life are suggested.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A multi-scale experimental investigation for fatigue limit and fatigue crack initiation behavior of powder bed fusion-laser beam 316L stainless steel
    Zhu, Wen
    Moumni, Ziad
    Zhu, Jihong
    Zhang, Yahui
    Li, Shaoying
    Zhang, Weihong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 866
  • [2] Experimental investigation on the fatigue behavior of laser powder bed fused 316L stainless steel
    Ponticelli, Gennaro Salvatore
    Panciroli, Riccardo
    Venettacci, Simone
    Tagliaferri, Flaviana
    Guarino, Stefano
    CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2022, 38 : 787 - 800
  • [3] Effect of heat treatment on fatigue crack initiation of laser powder bed fusion stainless steel 316L
    Zhang, Meng
    Sun, Chen-Nan
    Zhang, Xiang
    Goh, Phoi Chin
    Wei, Jun
    Hardacre, David
    Li, Hua
    12TH INTERNATIONAL FATIGUE CONGRESS (FATIGUE 2018), 2018, 165
  • [4] Fatigue behavior of stainless steel 316L microstruts fabricated by laser powder bed fusion
    Ghosh, Abhi
    Kumar, Amit
    Harris, Adrian
    Kietzig, Anne-Marie
    Brochu, Mathieu
    MATERIALIA, 2022, 26
  • [5] Multi-scale characterisation of microstructure and texture of 316L stainless steel manufactured by laser powder bed fusion
    Moyle, Maxwell
    Ledermueller, Carina
    Zou, Zheren
    Primig, Sophie
    Haghdadi, Nima
    MATERIALS CHARACTERIZATION, 2022, 184
  • [6] Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L
    Kurdi, Abdulaziz
    Tabbakh, Thamer
    Basak, Animesh Kumar
    MATERIALS, 2023, 16 (17)
  • [7] Effect of Heat Treatment on Fatigue Performance of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Li, Zhehan
    Xie, Deqiao
    Zhou, Kai
    Naqvi, Syed Mesum Raza
    Wang, Dongsheng
    Zhao, Jianfeng
    Shen, Lida
    Tian, Zongjun
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (04):
  • [8] Effect of scanning speed on fatigue behavior of 316L stainless steel fabricated by laser powder bed fusion
    Cao, Yinfeng
    Moumni, Ziad
    Zhu, Jihong
    Gu, Xiaojun
    Zhang, Yahui
    Zhai, Xingyue
    Zhang, Weihong
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 319
  • [9] Corrosion Fatigue Characteristics of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Gnanasekaran, Balachander
    Song, Jie
    Vasudevan, Vijay
    Fu, Yao
    METALS, 2021, 11 (07)
  • [10] Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion
    Elangeswaran, Chola
    Cutolo, Antonio
    Muralidharan, Gokula Krishna
    de Formanoir, Charlotte
    Berto, Filippo
    Vanmeensel, Kim
    Van Hooreweder, Brecht
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 123 : 31 - 39