Quantitative Imaging of MicroRNA-21 In Vivo for Real-Time Monitoring of the Cancer Initiation and Progression

被引:2
作者
Zheng, Liting [1 ]
Wu, Ying [2 ]
Wang, Qian [2 ]
Du, Wei [1 ]
Chen, Lanlan [1 ]
Song, Jibin [2 ]
Yang, Huanghao [1 ]
机构
[1] Fuzhou Univ, Coll Chem, New Cornerstone Sci Lab, Fujian Sci & Technol Innovat Lab Optoelect Informa, Fuzhou 350108, Peoples R China
[2] Beijing Univ Chem Technol, Coll Chem, State key Lab Chem Resource Engn, Beijing 10010, Peoples R China
基金
中国国家自然科学基金;
关键词
biosensors; initiation and progression; microRNA-21; nanoprobes; NIR-II fluorescence imaging; UP-CONVERSION; NANOPARTICLES; STRATEGY; THERAPY;
D O I
10.1002/adfm.202407348
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MicroRNA-21 (MiR-21) has been confirmed to be upregulated in tumors, and its abnormal expression is closely associated with tumor occurrence. However, the traditional imaging methods are limited to qualitative imaging of miR-21, and no effective strategy has been developed for monitoring its concentration in vivo during cancer initiation and progression. Herein, a biosensor is created utilizing a NIR-II ratiometric fluorescent nanoprobe to quantitatively monitor dynamic alterations in miR-21 levels in vivo. The nanoprobe (termed DCNP@DNA2@IR806) is constructed by introducing IR806 as a donor and down-conversion nanoparticles (DCNP) as the acceptor, using DNA as linkers. Upon miR-21-responsive initiation of the nanoprobe, the 1550 nm fluorescent signal of DCNP stimulated by a 808 nm laser (F1550, 808Ex) increased because of the close proximity of IR806 to the DCNP and the subsequent non-radiative energy transfer (NRET). Meanwhile, the 1550 nm fluorescent signal of DCNP stimulated by a 980 nm laser (F1550, 980Ex) remained stable because of the absence of NRET. This ratiometric NIR-II fluorescent signal has been confirmed to be a reliable indicator of miR-21 concentration in vivo. The strategy holds promise for further enhancing the understanding of microRNAs-based molecular mechanisms underlying cancer progression, laying a foundation for the early diagnosis of microRNAs-related diseases. A miR-21-activated ratiometric NIR-II fluorescence nanoprobe (DCNP@DNA2@IR806) for early diagnosis and real-time monitoring of miR-21 levels during cancer initiation and progression via enhanced ratiometric fluorescence signals in vivo. The content of activated miR-21 is positively correlated with tumor volume in the development of tumors. image
引用
收藏
页数:12
相关论文
共 40 条
[1]   MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer [J].
Bertoli, Gloria ;
Cava, Claudia ;
Castiglioni, Isabella .
THERANOSTICS, 2015, 5 (10) :1122-1143
[2]   Smart Programmable Scalable Dual-Mode Diagnostic Logic Nanoflare Strategy for Dual-Tumor Marker Detection [J].
Cai, Zhiheng ;
Wang, Ali ;
Wang, Ying ;
Qiu, Zhili ;
Li, Yuting ;
Yan, Hanrong ;
Fu, Mengying ;
Liu, Miaoyan ;
Yu, Yanyan ;
Gao, Fenglei .
ANALYTICAL CHEMISTRY, 2022, 94 (27) :9715-9723
[3]   Origins and Mechanisms of miRNAs and siRNAs [J].
Carthew, Richard W. ;
Sontheimer, Erik J. .
CELL, 2009, 136 (04) :642-655
[4]   Integrating genomic features for non-invasive early lung cancer detection [J].
Chabon, Jacob J. ;
Hamilton, Emily G. ;
Kurtz, David M. ;
Esfahani, Mohammad S. ;
Moding, Everett J. ;
Stehr, Henning ;
Schroers-Martin, Joseph ;
Nabet, Barzin Y. ;
Chen, Binbin ;
Chaudhuri, Aadel A. ;
Liu, Chih Long ;
Hui, Angela B. ;
Jin, Michael C. ;
Azad, Tej D. ;
Almanza, Diego ;
Jeon, Young-Jun ;
Nesselbush, Monica C. ;
Keh, Lyron Co Ting ;
Bonilla, Rene F. ;
Yoo, Christopher H. ;
Ko, Ryan B. ;
Chen, Emily L. ;
Merriott, David J. ;
Massion, Pierre P. ;
Mansfield, Aaron S. ;
Jen, Jin ;
Ren, Hong Z. ;
Lin, Steven H. ;
Costantino, Christina L. ;
Burr, Risa ;
Tibshirani, Robert ;
Gambhir, Sanjiv S. ;
Berry, Gerald J. ;
Jensen, Kristin C. ;
West, Robert B. ;
Neal, Joel W. ;
Wakelee, Heather A. ;
Loo, Billy W., Jr. ;
Kunder, Christian A. ;
Leung, Ann N. ;
Lui, Natalie S. ;
Berry, Mark F. ;
Shrager, Joseph B. ;
Nair, Viswam S. ;
Haber, Daniel A. ;
Sequist, Lecia V. ;
Alizadeh, Ash A. ;
Diehn, Maximilian .
NATURE, 2020, 580 (7802) :245-+
[5]   2D MOF Nanosensor-Integrated Digital Droplet Microfluidic Flow Cytometry for In Situ Detection of Multiple miRNAs in Single CTC Cells [J].
Chen, Junyue ;
Oudeng, Gerile ;
Feng, Hongtao ;
Liu, Sixi ;
Li, Hung-Wing ;
Ho, Yi-Ping ;
Chen, Yan ;
Tan, Ying ;
Yang, Mo .
SMALL, 2022, 18 (32)
[6]   Singlet Oxygen Generation in Dark-Hypoxia by Catalytic Microenvironment-Tailored Nanoreactors for NIR-II Fluorescence-Monitored Chemodynamic Therapy [J].
Chen, Tao ;
Hou, Peidong ;
Zhang, Yafei ;
Ao, Rujiang ;
Su, Lichao ;
Jiang, Yifan ;
Zhang, Yuanli ;
Cai, Huilan ;
Wang, Jun ;
Chen, Qiushui ;
Song, Jibin ;
Lin, Lisen ;
Yang, Huanghao ;
Chen, Xiaoyuan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (27) :15006-15012
[7]   A Radio-Pharmaceutical Fluorescent Probe for Synergistic Cancer Radiotherapy and Ratiometric Imaging of Tumor Reactive Oxygen Species [J].
Ge, Xiaoguang ;
Su, Lichao ;
Chen, Zhongxiang ;
Zhu, Kang ;
Zhang, Xuan ;
Wu, Ying ;
Song, Jibin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (29)
[8]  
He Y., 2023, ANGEW CHEM-GER EDIT, V62
[9]  
Huang XL, 2018, CHEM SOC REV, V47, P2873, DOI [10.1039/c7cs00612h, 10.1039/C7CS00612H]
[10]   Conformational Effects on the Threading Kinetics of Dumbbell-Shaped Guests into the Cavity of Oxatub[4]arene [J].
Jia, Fei ;
Li, Dong-Hao ;
He, Shan ;
Yang, Liu-Pan ;
Jiang, Wei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (45)