Systems-Level Modeling for CRISPR-Based Metabolic Engineering

被引:5
作者
Cardiff, Ryan A. L. [1 ,2 ,3 ,4 ]
Carothers, James M. [1 ,2 ,4 ]
Zalatan, Jesse G. [1 ,2 ,3 ]
Sauro, Herbert M. [1 ,2 ,5 ]
机构
[1] Univ Washington, Mol Engn & Sci Inst, Seattle, WA 98195 USA
[2] Univ Washington, Ctr Synthet Biol, Seattle, WA 98195 USA
[3] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[4] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
[5] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
metabolic engineering; CRISPR; genome-scalemodeling; gRNA design; DYNAMIC CONTROL; OPTIMIZATION; DESIGN; FLUX; ACTIVATION; STRAIN; REPRESSION; GENERATION; BACTERIA; PLATFORM;
D O I
10.1021/acssynbio.4c00053
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The CRISPR-Cas system has enabled the development of sophisticated, multigene metabolic engineering programs through the use of guide RNA-directed activation or repression of target genes. To optimize biosynthetic pathways in microbial systems, we need improved models to inform design and implementation of transcriptional programs. Recent progress has resulted in new modeling approaches for identifying gene targets and predicting the efficacy of guide RNA targeting. Genome-scale and flux balance models have successfully been applied to identify targets for improving biosynthetic production yields using combinatorial CRISPR-interference (CRISPRi) programs. The advent of new approaches for tunable and dynamic CRISPR activation (CRISPRa) promises to further advance these engineering capabilities. Once appropriate targets are identified, guide RNA prediction models can lead to increased efficacy in gene targeting. Developing improved models and incorporating approaches from machine learning may be able to overcome current limitations and greatly expand the capabilities of CRISPR-Cas9 tools for metabolic engineering.
引用
收藏
页码:2643 / 2652
页数:10
相关论文
共 123 条
[1]  
[Anonymous], 2024, REDIRECTORDESIGNING, DOI [10.1371/journal.pcbi.1002882, DOI 10.1371/JOURNAL.PCBI.1002882]
[2]  
[Anonymous], 2024, OPTDESIGN IDENTIFYIN, DOI [10.1021/acssynbio.1c00610, DOI 10.1021/ACSSYNBIO.1C00610]
[3]  
[Anonymous], 2022, BIDIRECTIONAL TITRAT, DOI [10.1073/pnas.2007413117, DOI 10.1073/PNAS.2007413117]
[4]   The era of big data: Genome-scale modelling meets machine learning [J].
Antonakoudis, Athanasios ;
Barbosa, Rodrigo ;
Kotidis, Pavlos ;
Kontoravdi, Cleo .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 :3287-3300
[5]   Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale [J].
Banerjee, Deepanwita ;
Eng, Thomas ;
Lau, Andrew K. ;
Sasaki, Yusuke ;
Wang, Brenda ;
Chen, Yan ;
Prahl, Jan-Philip ;
Singan, Vasanth R. ;
Herbert, Robin A. ;
Liu, Yuzhong ;
Tanjore, Deepti ;
Petzold, Christopher J. ;
Keasling, Jay D. ;
Mukhopadhyay, Aindrila .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]   Synthetic Gene Circuits Combining CRISPR Interference and CRISPR Activation in E. coli: Importance of Equal Guide RNA Binding Affinities to Avoid Context-Dependent Effects [J].
Barbier, Icvara ;
Kusumawardhani, Hadiastri ;
Chauhan, Lakshya ;
Harlapur, Pradyumna Vinod ;
Kumar, Jolly Mohit ;
Schaerli, Yolanda .
ACS SYNTHETIC BIOLOGY, 2023, 12 (10) :3064-3071
[7]   Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system [J].
Bikard, David ;
Jiang, Wenyan ;
Samai, Poulami ;
Hochschild, Ann ;
Zhang, Feng ;
Marraffini, Luciano A. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (15) :7429-7437
[8]   Dynamic metabolic engineering: New strategies for developing responsive cell factories [J].
Brockman, Irene M. ;
Prather, Kristala L. J. .
BIOTECHNOLOGY JOURNAL, 2015, 10 (09) :1360-1369
[9]   CRISPR-Based Approaches for Gene Regulation in Non-Model Bacteria [J].
Call, Stephanie N. ;
Andrews, Lauren B. .
FRONTIERS IN GENOME EDITING, 2022, 4
[10]  
Cautha SC., 2013, COMPUTER APPL BIOTEC, P221, DOI DOI 10.3182/20131216-3-IN-2044.00066