The classification of semi-conformal structures of Heisenberg vertex operator algebras

被引:0
作者
Chu, Yanjun [1 ]
Lin, Zongzhu [2 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
关键词
Vertex Operator Algebra; Semi-conformal vector; Heisenberg vertex algebra; Semi-conformal subalgebra; DECOMPOSITION; VECTORS; SUBFACTORS; VARIETIES;
D O I
10.1016/j.geomphys.2024.105193
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to understand Heisenberg vertex algebras in terms of their semi-conformal structures. First, we study the moduli space of conformal and semi-conformal structures on Heisenberg vertex algebras that have the standard fixed conformal gradation by describing their automorphism groups. We describe its semi-conformal vectors as pairs consisting of regular subspaces and the projections of a fixed vector space in these regular subspaces. Then by automorphism groups G of Heisenberg vertex operator algebras, we get all G - orbits of varieties of their semi-conformal vectors and give some characterizations of Heisenberg vertex operator algebras. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 30 条
[11]  
Frenkel IB., 1988, Vertex Operator Algebras and the Monster, Pure and Applied Mathematics, V134
[12]   TENSOR DECOMPOSITION, PARAFERMIONS, LEVEL-RANK DUALITY, AND RECIPROCITY LAW FOR VERTEX OPERATOR ALGEBRAS [J].
Jiang, Cuipo ;
Lin, Zongzhu .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (12) :8325-8352
[13]  
[姜翠波 Jiang Cuipo], 2017, [中国科学. 数学, Scientia Sinica Mathematica], V47, P1579
[14]   The commutant of L(sl2)over-cap(n, 0) in the vertex operator algebra L(sl2)over-cap(1,0)⊗n [J].
Jiang, Cuipo ;
Lin, Zongzhu .
ADVANCES IN MATHEMATICS, 2016, 301 :227-257
[15]  
Jones V F R, 1997, London Mathematical Society Lecture Note Series, V234
[16]  
Jones VFR, 2014, B AM MATH SOC, V51, P277
[17]  
Kac V., 1998, University Lecture Series, V10
[18]   Decomposition of the Moonshine vertex operator algebra as Virasoro modules [J].
Kitazume, M ;
Lam, CH ;
Yamada, H .
JOURNAL OF ALGEBRA, 2000, 226 (02) :893-919
[19]   Decomposition of the lattice vertex operator algebra V√2Al [J].
Lam, CH ;
Yamada, H .
JOURNAL OF ALGEBRA, 2004, 272 (02) :614-624
[20]   Code vertex operator algebras under coordinates change [J].
Lam, CH .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (09) :4587-4605