Anomalous Edge Detection in Edge Exchangeable Social Network Models

被引:0
作者
Luo, Rui [1 ,2 ]
Nettasinghe, Buddhika [3 ]
Krishnamurthy, Vikram [2 ]
机构
[1] City Univ Hong Kong, Kowloon Tong, Hong Kong, Peoples R China
[2] Cornell Univ, Ithaca, NY 14853 USA
[3] Univ Iowa, Iowa City, IA USA
来源
CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, VOL 204 | 2023年 / 204卷
基金
美国国家科学基金会;
关键词
Edge Exchangeable Model; Conformal Prediction; Anomaly Detection; Social Networks; GRAPHS; ARRAYS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies detecting anomalous edges in directed graphs that model social networks. We exploit edge exchangeability as a criterion for distinguishing anomalous edges from normal edges. Then we present an anomaly detector based on conformal prediction theory; this detector has a guaranteed upper bound for false positive rate. In numerical experiments, we show that the proposed algorithm achieves superior performance to baseline methods.
引用
收藏
页码:287 / 310
页数:24
相关论文
共 53 条
  • [1] Adams H, 2021, Uniswap v3 core
  • [2] Aggarwal CC, 2011, PROC INT CONF DATA, P399, DOI 10.1109/ICDE.2011.5767885
  • [3] Graph based anomaly detection and description: a survey
    Akoglu, Leman
    Tong, Hanghang
    Koutra, Danai
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2015, 29 (03) : 626 - 688
  • [4] Akoglu L, 2010, LECT NOTES ARTIF INT, V6119, P410
  • [5] REPRESENTATIONS FOR PARTIALLY EXCHANGEABLE ARRAYS OF RANDOM-VARIABLES
    ALDOUS, DJ
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (04) : 581 - 598
  • [6] [Anonymous], 2016, Advances in Neural Information Processing Systems
  • [7] [Anonymous], 2003, P 20 INT C MACHINE L
  • [8] Bhatia S, 2020, AAAI CONF ARTIF INTE, V34, P3243
  • [9] Mining social networks for anomalies: Methods and challenges
    Bindu, P. V.
    Thilagam, P. Santhi
    [J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2016, 68 : 213 - 229
  • [10] Variational Inference: A Review for Statisticians
    Blei, David M.
    Kucukelbir, Alp
    McAuliffe, Jon D.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 859 - 877