Grain Boundary Sliding During High Pressure Torsion of Nanocrystalline Au-13Pd Alloy

被引:2
作者
Skrotzki, Werner [1 ]
Pukenas, Aurimas [1 ]
Joni, Bertalan [2 ]
Ungar, Tamas [2 ]
Toth, Laszlo S. [3 ,4 ,5 ]
Ivanisenko, Yulia [6 ]
机构
[1] Tech Univ Dresden, Inst Festkorper & Mat Phys, D-01062 Dresden, Germany
[2] Budapest Eotv Univ, Dept Mat Phys, H-1117 Budapest, Hungary
[3] Univ Miskolc, Inst Phys Met Met Forming & Nanotechnol, H-3515 Miskolc, Hungary
[4] Univ Lorraine Metz, Lab Etud Microstruct & Mecan Mat LEM3, F-57045 Metz 01, France
[5] Univ Lorraine, Lab Excellence Design Alloy Met Low mAss Struct DA, F-57045 Metz, France
[6] Karlsruher Inst Technol KIT, Inst Nanotechnol, D-76021 Karlsruhe, Germany
关键词
grain boundary sliding; high-pressure torsion; microstructure; nanocrystalline Au-13Pd alloy; polycrystal modeling; texture; STACKING-FAULT ENERGY; SEVERE PLASTIC-DEFORMATION; X-RAY-DIFFRACTION; STAINLESS-STEELS; MICROSTRUCTURE; TEMPERATURE; MECHANISMS; SATURATION; STRENGTH; SIZE;
D O I
10.1002/adem.202400214
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microstructure and texture are investigated for nanocrystalline Au-13at%Pd deformed by high-pressure torsion. The grain size of this alloy is observed to remain below about 20 nm when subjected to severe plastic deformation. Surprisingly, the initial <110> powder compaction texture does not change significantly during shearing. The results are explained in terms of a grain boundary sliding mechanism involving planar interfaces formed by grain boundary migration.
引用
收藏
页数:9
相关论文
共 49 条
[1]   Unraveling the nature of room temperature grain growth in nanocrystalline materials [J].
Ames, Markus ;
Markmann, Juergen ;
Karos, Rudolf ;
Michels, Andreas ;
Tschoepe, Andreas ;
Birringer, Rainer .
ACTA MATERIALIA, 2008, 56 (16) :4255-4266
[2]  
[Anonymous], 2008, MULT MAN MULT 3
[3]   Atomistic simulation of the deformation of nanocrystalline palladium: the effect of voids [J].
Bachurin, D. V. ;
Gumbsch, P. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2014, 22 (02)
[4]   Stacking faults and twin boundaries in fcc crystals determined by x-ray diffraction profile analysis [J].
Balogh, Levente ;
Ribarik, Gabor ;
Ungar, Tamas .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (02)
[5]  
Beausir B., 2017, Analysis Tools for Electron and X-Ray Diffraction, ATEX-Software
[6]  
BUNGE HJ, 1965, Z METALLKD, V56, P872
[7]   ON THE VALIDITY OF THE HALL-PETCH RELATIONSHIP IN NANOCRYSTALLINE MATERIALS [J].
CHOKSHI, AH ;
ROSEN, A ;
KARCH, J ;
GLEITER, H .
SCRIPTA METALLURGICA, 1989, 23 (10) :1679-1683
[8]   Composition-dependence of stacking fault energy in austenitic stainless steels through linear regression with random intercepts [J].
de Bellefon, G. Meric ;
van Duysen, J. C. ;
Sridharan, K. .
JOURNAL OF NUCLEAR MATERIALS, 2017, 492 :227-230
[9]   Influence of dislocation-solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion [J].
Edalati, Kaveh ;
Akama, Daichi ;
Nishio, Asuki ;
Lee, Seungwon ;
Yonenaga, Yosuke ;
Cubero-Sesin, Jorge M. ;
Horita, Zenji .
ACTA MATERIALIA, 2014, 69 :68-77
[10]   NANOCRYSTALLINE MATERIALS [J].
BIRRINGER, R .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1989, 117 :33-43