Local geometry and quantum geometric tensor of mixed states

被引:8
作者
Hou, Xu-Yang [1 ]
Zhou, Zheng [1 ]
Wang, Xin [1 ]
Guo, Hao [1 ,2 ]
Chien, Chih-Chun [3 ]
机构
[1] Southeast Univ, Sch Phys, Jiulonghu Campus, Nanjing 211189, Peoples R China
[2] Hefei Natl Lab, Hefei 230088, Peoples R China
[3] Univ Calif Merced, Dept Phys, Merced, CA 95343 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
COMPUTATION; DISTANCE; VORTICES;
D O I
10.1103/PhysRevB.110.035144
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The quantum geometric tensor (QGT) is a fundamental concept for characterizing the local geometry of quantum states. After casting the geometry of pure quantum states and extracting the QGT, we generalize the geometry to mixed quantum states via the density matrix and its purification. The gauge-invariant QGT of mixed states is derived, whose real and imaginary parts are the Bures metric and the Uhlmann form, respectively. In contrast to the imaginary part of the pure-state QGT that is proportional to the Berry curvature, the Uhlmann form vanishes identically for ordinary physical processes. Moreover, there exists a Pythagorean-like equation that links different local distances and reflect the underlying fibration. The Bures metric of mixed states is shown to reduce to the corresponding Fubini-Study metric of the ground states as temperature approaches zero, establishing a correspondence despite the different underlying fibrations. We also present two examples with contrasting local geometries and discuss experimental implications.
引用
收藏
页数:21
相关论文
共 80 条
[1]   Riemannian geometry of resonant optical responses [J].
Ahn, Junyeong ;
Guo, Guang-Yu ;
Nagaosa, Naoto ;
Vishwanath, Ashvin .
NATURE PHYSICS, 2022, 18 (03) :290-296
[2]   Low-Frequency Divergence and Quantum Geometry of the Bulk Photovoltaic Effect in Topological Semimetals [J].
Ahn, Junyeong ;
Guo, Guang-Yu ;
Nagaosa, Naoto .
PHYSICAL REVIEW X, 2020, 10 (04)
[3]   Geometric Aspects of Mixed Quantum States Inside the Bloch Sphere [J].
Alsing, Paul M. ;
Cafaro, Carlo ;
Felice, Domenico ;
Luongo, Orlando .
QUANTUM REPORTS, 2024, 6 (01) :90-109
[4]   Comparing metrics for mixed quantum states: Sjoqvist and Bures [J].
Alsing, Paul M. ;
Cafaro, Carlo ;
Luongo, Orlando ;
Lupo, Cosmo ;
Mancini, Stefano ;
Quevedo, Hernando .
PHYSICAL REVIEW A, 2023, 107 (05)
[5]  
Amari SI, 2016, APPL MATH SCI, V194, P1, DOI 10.1007/978-4-431-55978-8
[6]  
[Anonymous], 2003, The geometric phase in quantum systems, DOI DOI 10.1007/978-3-662-10333-36
[7]   Fractional Chern insulators with a non-Landau level continuum limit [J].
Bauer, David ;
Talkington, Spenser ;
Harper, Fenner ;
Andrews, Bartholomew ;
Roy, Rahul .
PHYSICAL REVIEW B, 2022, 105 (04)
[8]  
Bengtsson I., 2006, GEOMETRY QUANTUM STA
[9]  
Bernevig B. A., 2013, Topological Insulators and Topological Superconductors