Genome-Wide Identification and Expression Analysis of ent-kaurene synthase-like Gene Family Associated with Abiotic Stress in Rice

被引:1
|
作者
Teng, Yantong [1 ,2 ]
Wang, Yingwei [3 ]
Zhang, Yutong [3 ]
Xie, Qinyu [3 ]
Zeng, Qinzong [3 ]
Cai, Maohong [3 ]
Chen, Tao [1 ,3 ]
机构
[1] Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing 100081, Peoples R China
[2] Inner Mongolia Univ, Coll Life Sci, Hohhot 010021, Peoples R China
[3] Hangzhou Normal Univ, Coll Life & Environm Sci, Zhejiang Prov Key Lab Genet Improvement & Qual Con, Hangzhou 310036, Peoples R China
关键词
Oryza sativa; KSL; GA; abiotic stress; plant height; GIBBERELLIN BIOSYNTHESIS; FUNCTIONAL-CHARACTERIZATION; SALT TOLERANCE; METABOLISM; ORYZA; EVOLUTION; ENCODES;
D O I
10.3390/ijms25105513
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rice (Oryza sativa) is one of the most important crops for humans. The homologs of ent-kaurene synthase (KS) in rice, which are responsible for the biosynthesis of gibberellins and various phytoalexins, are identified by their distinct biochemical functions. However, the KS-Like (KSL) family's potential functions related to hormone and abiotic stress in rice remain uncertain. Here, we identified the KSL family of 19 species by domain analysis and grouped 97 KSL family proteins into three categories. Collinearity analysis of KSLs among Poaceae indicated that the KSL gene may independently evolve and OsKSL1 and OsKSL4 likely play a significant role in the evolutionary process. Tissue expression analysis showed that two-thirds of OsKSLs were expressed in various tissues, whereas OsKSL3 and OsKSL5 were specifically expressed in the root and OsKSL4 in the leaf. Based on the fact that OsKSL2 participates in the biosynthesis of gibberellins and promoter analysis, we detected the gene expression profiles of OsKSLs under hormone treatments (GA, PAC, and ABA) and abiotic stresses (darkness and submergence). The qRT-PCR results demonstrated that OsKSL1, OsKSL3, and OsKSL4 responded to all of the treatments, meaning that these three genes can be candidate genes for abiotic stress. Our results provide new insights into the function of the KSL family in rice growth and resistance to abiotic stress.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Genome-wide characterization and expression analysis of the Dof gene family related to abiotic stress in watermelon
    Zhou, Yong
    Cheng, Yuan
    Wan, Chunpeng
    Li, Jingwen
    Yang, Youxin
    Chen, Jinyin
    PEERJ, 2020, 8
  • [32] Genome-Wide Identification and Expression Analysis of the RADIALIS-like Gene Family in Camellia sinensis
    Wang, Shaoying
    Wen, Beibei
    Yang, Yun
    Long, Shanshan
    Liu, Jianjun
    Li, Meifeng
    PLANTS-BASEL, 2023, 12 (17):
  • [33] Genome-wide identification and analysis of the sucrose synthase gene family in cassava (Manihot esculenta Crantz)
    Huang, Tangwei
    Luo, Xinglu
    Fan, Zhupeng
    Yang, Yanni
    Wan, Wen
    GENE, 2021, 769
  • [34] Genome-wide identification of starch phosphorylase gene family in Rosa chinensis and expression in response to abiotic stress
    Li, Xu
    Chen, Yang
    Zhang, Zaiqi
    He, Qin
    Tian, Tingting
    Jiao, Yangmiao
    Cao, Liang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Genome-Wide Identification, Characterization, Evolutionary Analysis, and Expression Pattern of the GPAT Gene Family in Barley and Functional Analysis of HvGPAT18 under Abiotic Stress
    Yang, Chenglan
    Ma, Jianzhi
    Qi, Cunying
    Ma, Yinhua
    Xiong, Huiyan
    Duan, Ruijun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (11)
  • [36] Genome-wide investigation and expression analysis of OSCA gene family in response to abiotic stress in alfalfa
    Li, Xiaohong
    Wang, Xiaotong
    Ma, Xuxia
    Cai, Wenqi
    Liu, Yaling
    Song, Wenxue
    Fu, Bingzhe
    Li, Shuxia
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [37] Genome-Wide Identification and Abiotic-Stress-Responsive Expression of CKX Gene Family in Liriodendron chinense
    Sun, Xiao
    Zhu, Liming
    Hao, Zhaodong
    Wu, Weihuang
    Xu, Lin
    Yang, Yun
    Zhang, Jiaji
    Lu, Ye
    Shi, Jisen
    Chen, Jinhui
    PLANTS-BASEL, 2023, 12 (11):
  • [38] Genome-wide identification and expression analysis of the lipoxygenase gene family in sesame reveals regulatory networks in response to abiotic stress
    Tulsi, Ishwar
    Patidar, Ishwar
    Ampasala, Dinakara Rao
    MOLECULAR BIOLOGY REPORTS, 2025, 52 (01)
  • [39] Comprehensive Genome-Wide Identification of the RNA-Binding Glycine-Rich Gene Family and Expression Profiling under Abiotic Stress in Brassica oleracea
    Duan, Mengmeng
    Zong, Mei
    Guo, Ning
    Han, Shuo
    Wang, Guixiang
    Miao, Liming
    Liu, Fan
    PLANTS-BASEL, 2023, 12 (21):
  • [40] Genome-wide identification and expression analysis of the SPL gene family and its response to abiotic stress in barley (Hordeum vulgare L.)
    He, Ailing
    Zhou, Hui
    Ma, Chao
    Bai, Qing
    Yang, Haizhu
    Yao, Xin
    Wu, Weijiao
    Xue, Guoxing
    Ruan, Jingjun
    BMC GENOMICS, 2024, 25 (01):