Eigenvalue estimates for p-Laplace problems on domains expressed in Fermi coordinates

被引:0
作者
Brandolini, B. [1 ]
Chiacchio, F. [2 ]
Langford, J. J. [3 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, via Cintia, I-80126 Naples, Italy
[3] Bucknell Univ, Dept Math, One Dent Dr, Lewisburg, PA 17837 USA
关键词
p-Laplacian; Neumann eigenvalues; Lower bounds; Non-convex domains; POINCARE INEQUALITIES; NEUMANN; SPECTRUM;
D O I
10.1016/j.jmaa.2024.128616
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove explicit and sharp eigenvalue estimates for Neumann p-Laplace eigenvalues in domains that admit a representation in Fermi coordinates. More precisely, if gamma denotes a non-closed curve in R-2 symmetric with respect to the y-axis, let D subset of R-2 denote the domain of points that lie on one side of gamma and within a prescribed distance delta(s) from gamma (s) (here s denotes the arc length parameter for gamma). Write mu odd the lowest nonzero eigenvalue of the Neumann p-Laplacian with an eigenfunction that is odd with respect to the y-axis. For all p > 1, we provide a lower bound on mu (odd)(1) (D) when the distance function delta and the signed curvature k of gamma satisfy certain geometric constraints. In the linear case (p = 2), we establish sufficient conditions to guarantee mu (odd)(1) (D) = mu (1)(D). We finally study the asymptotics of mu (1)(D) as the distance function tends to zero. We show that in the limit, the eigenvalues converge to the lowest nonzero eigenvalue of a weighted one-dimensional Neumann p-Laplace problem. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data
引用
收藏
页数:21
相关论文
共 30 条
  • [1] Avinyo A., 1997, Ital. J. Pure Appl. Math., V2, P133
  • [2] Sharp Estimates for Eigenfunctions of a Neumann Problem
    Brandolini, B.
    Chiacchio, F.
    Trombetti, C.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (11) : 1317 - 1337
  • [3] Sharp Poincare inequalities in a class of non-convex sets
    Brandolini, Barbara
    Chiacchio, Francesco
    Dryden, Emily B.
    Langford, Jeffrey J.
    [J]. JOURNAL OF SPECTRAL THEORY, 2018, 8 (04) : 1583 - 1615
  • [4] Optimal lower bounds for eigenvalues of linear and nonlinear Neumann problems
    Brandolini, Barbara
    Chiacchio, Francesco
    Trombetti, Cristina
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (01) : 31 - 45
  • [5] Cheeger Jeff, 2015, PROBLEMS ANAL, P195
  • [6] Colorado E., 2004, Topol. Methods Nonlinear Anal., V23, P239
  • [7] Exner P, 1999, OPER THEORY ADV APPL, V108, P47
  • [8] Spectral optimization for Robin Laplacian on domains admitting parallel coordinates
    Exner, Pavel
    Lotoreichik, Vladimir
    [J]. MATHEMATISCHE NACHRICHTEN, 2022, 295 (06) : 1163 - 1173
  • [9] A remark on optimal weighted Poincare inequalities for convex domains
    Ferone, V.
    Nitsch, C.
    Trombetti, C.
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2012, 23 (04) : 467 - 475
  • [10] Gol'dshtein V, 2018, INTEGR EQUAT OPER TH, V90, DOI 10.1007/s00020-018-2469-z