METRIC REGULARITY AND ULAM-HYERS STABILITY RESULTS FOR COINCIDENCE PROBLEMS WITH MULTIVALUED OPERATORS

被引:0
作者
Mlesnite, Oana [1 ]
Petrusel, Adrian [1 ]
机构
[1] Univ Babes Bolyai, Dept Math, Cluj Napoca 400084, Romania
关键词
Metric regularity; Ulam-Hyers stability; coincidence point; fixed point; multivalued operator; VALUED CONTRACTION MAPPINGS; THEOREM; SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Open covering and metric regularity are two important properties which play an important role in several topics of modern variational analysis. In this paper, we will present some existence and Ulam-Hyers stability results for coincidence point problems with multivalued operators. The basic hypothesis in these results is the metric regularity.
引用
收藏
页码:1397 / 1413
页数:17
相关论文
共 19 条
[1]  
Allaire G, 2008, TEXTS APPL MATH, V55
[2]  
Aubin JP, 2009, Modern Birkhauser classics, DOI [10.1007/978-0-8176-4848-0, DOI 10.1007/978-0-8176-4848-0]
[3]  
Blaga A. V., 2010, INT J MATH ANAL, V4, P419
[4]   MULTI-VALUED CONTRACTION MAPPINGS IN GENERALIZED METRIC SPACES [J].
COVITZ, H ;
NADLER, SB .
ISRAEL JOURNAL OF MATHEMATICS, 1970, 8 (01) :5-&
[5]   The radius of metric regularity [J].
Dontchev, AL ;
Lewis, AS ;
Rockafellar, RT .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (02) :493-517
[6]   On perturbation stability of metric regularity [J].
Ioffe, AD .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :101-109
[7]  
Ioffe AD., 2000, Uspekhi Mat. Nauk, V55, P103
[8]  
Lewis A. S., SET VALUED ANAL, P13
[9]  
Lyusternik L.A., 1934, MAT SBORNIK, V41, P390
[10]   Existence and Ulam-Hyers stability results for multivalued coincidence problems [J].
Mlesnite, Oana ;
Petrusel, Adrian .
FILOMAT, 2012, 26 (05) :965-976