The types of metal M and crystal surface in the PtM (M = Co, Ni, Zn) IMCs catalysts to regulate catalytic performance of ethane direct dehydrogenation

被引:0
作者
Liu, Yue [1 ]
Han, Bing [1 ]
Wang, Baojun [1 ,2 ]
Fan, Maohong [3 ,4 ]
Ling, Lixia [1 ]
Zhang, Riguang [1 ]
机构
[1] Taiyuan Univ Technol, Coll Chem Engn & Technol, State Key Lab Clean & Efficient Coal Utilizat, Taiyuan 030024, Shanxi, Peoples R China
[2] Shanxi Zheda Inst Adv Mat & Chem Engn, Taiyuan 030024, Shanxi, Peoples R China
[3] Univ Wyoming, Coll Engn & Phys Sci, Sch Energy Resources, Laramie, WY 82071 USA
[4] Georgia Inst Technol, Coll Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
Ethane dehydrogenation; PtM intermetallic compounds; Surface structure; DFT calculations; Kinetic Monte Carlo simulations; PROPANE DEHYDROGENATION; OXIDATIVE DEHYDROGENATION; SELECTIVITY; PLATINUM; ETHYLENE; IDENTIFICATION; NANOCLUSTERS; CHEMISTRY; COVERAGE; KINETICS;
D O I
10.1016/j.fuel.2024.132159
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
PtM IMCs have improved catalytic performance of ethane dehydrogenation (EDH), however, identifying the functions of the types of metal M and crystal surface for the PtM IMCs catalysts in regulating EDH catalytic performance are still a challenge in experiment. This work fully investigated catalytic performance of EDH over three crystal surfaces (110), (111) and (200) of PtM IMCs (M = Co, Ni, Zn) by using density functional theory (DFT) calculations and kinetic Monte Carlo (kMC) simulations. The results show that the catalytic performance of EDH over PtM IMCs strongly depend on the types of metal M and crystal surfaces, the PtZn(1 1 1) catalyst is screened out as the most promising in EDH reaction with the optimal reaction temperature of 773.15 K. The geometrically isolated Pt site in the [PtM3] assembly of PtZn(1 1 1) could catalyze the C-H cleavage, and C2H4* exhibits weak pi-adsorption model at the individual Pt sites, promoting C2H4* desorption. Compared to (110) and (200) surfaces, the (1 1 1) surface with moderate Bader charge transfer showed the highest C2H4(g) production activity, and Zn atoms transferred more electrons to Pt atoms, which greatly weakened the charge transfer between C2H4* and the catalyst surface, favoring C2H4* desorption to inhibit C2H4* deep dehydrogenation. Moreover, the catalytic performance of PtZn(1 1 1) catalyst is superior to the industrially used PtSn catalyst. This work provides valuable structure clue for the design of high-performance catalyst in alkane direct dehydrogenation.
引用
收藏
页数:13
相关论文
共 78 条
[1]   Kinetics and mechanism of the heterogeneous oxidation of ethane and ethylene on samarium(III) oxide [J].
Amorebieta, VT ;
Colussi, AJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (42) :10236-10241
[2]   Ab initio molecular dynamics study of TiZrNbHfTa and VZrMoHfW liquid alloys [J].
Balyakin, I. A. ;
Gelchinski, B. R. ;
Rempel, A. A. .
MATERIALS TODAY COMMUNICATIONS, 2019, 21
[3]   Mesoporous-Silica-Stabilized Cobalt(II) Oxide Nanoclusters for Propane Dehydrogenation [J].
Bian, Zhoufeng ;
Dewangan, Nikita ;
Wang, Zhigang ;
Pati, Subhasis ;
Xi, Shibo ;
Borgna, Armando ;
Kus, Hidajat ;
Kawi, Sibudjing .
ACS APPLIED NANO MATERIALS, 2021, 4 (02) :1112-1125
[4]   Subsurface catalysis-mediated selectivity of dehydrogenation reaction [J].
Cai, Weiting ;
Mu, Rentao ;
Zha, Shenjun ;
Sun, Guodong ;
Chen, Sai ;
Zhao, Zhi-Jian ;
Li, Hao ;
Tian, Hao ;
Tang, Yu ;
Tao, Franklin ;
Zeng, Liang ;
Gong, Jinlong .
SCIENCE ADVANCES, 2018, 4 (08)
[5]   Identification of a Pt3Co Surface Intermetallic Alloy in Pt-Co Propane Dehydrogenation Catalysts [J].
Cesar, Laryssa Goncalves ;
Yang, Ce ;
Lu, Zheng ;
Ren, Yang ;
Zhang, Guanghui ;
Miller, Jeffrey T. .
ACS CATALYSIS, 2019, 9 (06) :5231-5244
[6]   Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies [J].
Chen, Sai ;
Chang, Xin ;
Sun, Guodong ;
Zhang, Tingting ;
Xu, Yiyi ;
Wang, Yang ;
Pei, Chunlei ;
Gong, Jinlong .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (05) :3315-3354
[7]   Propane Dehydrogenation on Single-Site [PtZn4] Intermetallic Catalysts [J].
Chen, Sai ;
Zhao, Zhi-Jian ;
Mu, Rentao ;
Chang, Xin ;
Luo, Jun ;
Purdy, Stephen C. ;
Kropf, A. Jeremy ;
Sun, Guodong ;
Pei, Chunlei ;
Miller, Jeffrey T. ;
Zhou, Xiaohong ;
Vovk, Evgeny ;
Yang, Yong ;
Gong, Jinlong .
CHEM, 2021, 7 (02) :387-405
[8]   Modifying structure-sensitive reactions by addition of Zn to Pd [J].
Childers, David J. ;
Schweitzer, Neil M. ;
Shahari, Seyed Mehdi Kamali ;
Rioux, Robert M. ;
Miller, Jeffrey T. ;
Meyer, Randall J. .
JOURNAL OF CATALYSIS, 2014, 318 :75-84
[9]   Thermal chemistry of C3 allyl groups on Pt(111) [J].
Chrysostomou, D ;
Zaera, F .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (05) :1003-1011
[10]   Zinc Promotion of Platinum for Catalytic Light Alkane Dehydrogenation: Insights into Geometric and Electronic Effects [J].
Cybulskis, Viktor J. ;
Bukowski, Brandon C. ;
Tseng, Han-Ting ;
Gallagher, James R. ;
Wu, Zhenwei ;
Wegener, Evan ;
Kropf, A. Jeremy ;
Ravel, Bruce ;
Ribeiro, Fabio H. ;
Greeley, Jeffrey ;
Miller, Jeffrey T. .
ACS CATALYSIS, 2017, 7 (06) :4173-4181