Skillful seasonal prediction of the 2022-23 mega soil drought over the Yangtze River basin by combining dynamical climate prediction and copula analysis

被引:5
作者
Wang, Yumiao [1 ,2 ]
Yuan, Xing [1 ,2 ,3 ]
Liu, Yuxiu [1 ,2 ]
Wang, Wenyan [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Key Lab Hydrometeorol Disaster Mech & Warning, Minist Water Resources, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Hydrol & Water Resources, Nanjing 210044, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
drought evolution; seasonal prediction; NMME; copula; Yangtze River basin; GLOBAL METEOROLOGICAL DROUGHT; FLASH DROUGHTS; RAINFALL;
D O I
10.1088/1748-9326/ad4978
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An unprecedented soil moisture drought broke out over the Yangtze River basin (YRB) in the summer of 2022 and lasted until the spring of 2023, caused great economic losses and serious environmental issues. With the rapid onset and long-lasting duration, the mega soil drought challenges the current seasonal prediction capacity. Whether the state-of-the-art climate models provide skillful predictions of the onset, persistence and recovery of the 2022-23 mega soil drought needs to be assessed. Identified by the drought area percentage, here we show that the mega soil drought over the YRB started from July, 2022, reached the peak in August, and diminished in April, 2023. Combined with real-time predictions of monthly precipitation released by three climate models participating in the North American multi-model ensemble (NMME) project, we predict the monthly evolution of the 2022-23 soil drought through a joint distribution between precipitation and soil moisture established by the copula method. The results indicate that the NMME/copula prediction well reproduced the spatiotemporal evolution of the mega soil drought at 1 month lead. Using the climatological prediction that relies on the information of initial soil moisture conditions as the reference forecast, the Brier skill score (BSS) values for NMME multi-model ensemble are 0.26, 0.23 and 0.2 for the forecast lead times increased from 1 to 3 months during the entire soil drought period. Specifically, the BSS is 0.14 at 2 months lead during drought onset stage, and 0.26 at 3 months lead during persistence stage, while it is close to zero at all leads during the recovery stage. Our study implies that climate models have great potential in probabilistic seasonal prediction of the onset and persistency of mega soil drought through combining with the copula method.
引用
收藏
页数:10
相关论文
共 63 条
[1]   Status and prospects for drought forecasting: opportunities in artificial intelligence and hybrid physical-statistical forecasting [J].
AghaKouchak, A. ;
Pan, B. ;
Mazdiyasni, O. ;
Sadegh, M. ;
Jiwa, S. ;
Zhang, W. ;
Love, C. A. ;
Madadgar, S. ;
Papalexiou, S. M. ;
Davis, S. J. ;
Hsu, K. ;
Sorooshian, S. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2238)
[2]  
[Anonymous], 1995, STAT METHODS ATMOSPH
[3]  
[Anonymous], 2010, Assessment of Intraseasonal to Interannual Climate Prediction and Predictability
[4]   Evolution of the North American Multi-Model Ensemble [J].
Becker, Emily ;
Kirtman, Ben P. ;
Pegion, Kathy .
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (09)
[5]   The rationale behind the success of multi-model ensembles in seasonal forecasting - I. Basic concept [J].
Hagedorn, R ;
Doblas-Reyes, FJ ;
Palmer, TN .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2005, 57 (03) :219-233
[6]   Measuring forecast skill: is it real skill or is it the varying climatology? [J].
Hamill, Thomas M. ;
Juras, Josip .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2006, 132 (621) :2905-2923
[7]   Seasonal Drought Prediction: Advances, Challenges, and Future Prospects [J].
Hao, Zengchao ;
Singh, Vijay P. ;
Xia, Youlong .
REVIEWS OF GEOPHYSICS, 2018, 56 (01) :108-141
[8]   The ERA5 global reanalysis [J].
Hersbach, Hans ;
Bell, Bill ;
Berrisford, Paul ;
Hirahara, Shoji ;
Horanyi, Andras ;
Munoz-Sabater, Joaquin ;
Nicolas, Julien ;
Peubey, Carole ;
Radu, Raluca ;
Schepers, Dinand ;
Simmons, Adrian ;
Soci, Cornel ;
Abdalla, Saleh ;
Abellan, Xavier ;
Balsamo, Gianpaolo ;
Bechtold, Peter ;
Biavati, Gionata ;
Bidlot, Jean ;
Bonavita, Massimo ;
De Chiara, Giovanna ;
Dahlgren, Per ;
Dee, Dick ;
Diamantakis, Michail ;
Dragani, Rossana ;
Flemming, Johannes ;
Forbes, Richard ;
Fuentes, Manuel ;
Geer, Alan ;
Haimberger, Leo ;
Healy, Sean ;
Hogan, Robin J. ;
Holm, Elias ;
Janiskova, Marta ;
Keeley, Sarah ;
Laloyaux, Patrick ;
Lopez, Philippe ;
Lupu, Cristina ;
Radnoti, Gabor ;
de Rosnay, Patricia ;
Rozum, Iryna ;
Vamborg, Freja ;
Villaume, Sebastien ;
Thepaut, Jean-Noel .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (730) :1999-2049
[9]   Lessons Learned from the 2017 Flash Drought across the US Northern Great Plains and Canadian Prairies [J].
Hoell, Andrew ;
Parker, Britt-Anne ;
Downey, Michael ;
Umphlett, Natalie ;
Jencso, Kelsey ;
Akyuz, F. Adnan ;
Peck, Dannele ;
Hadwen, Trevor ;
Fuchs, Brian ;
Kluck, Doug ;
Edwards, Laura ;
Perlwitz, Judith ;
Eischeid, Jon ;
Deheza, Veva ;
Pulwarty, Roger ;
Bevington, Kathryn .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2020, 101 (12) :E2171-E2185
[10]   CAUSES AND PREDICTABILITY OF THE 2012 GREAT PLAINS DROUGHT [J].
Hoerling, M. ;
Eischeid, J. ;
Kumar, A. ;
Leung, R. ;
Mariotti, A. ;
Mo, K. ;
Schubert, S. ;
Seager, R. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2014, 95 (02) :269-282