Non-Abelian factors for actions of Z and other non-C*-simple groups

被引:0
作者
Amrutam, Tattwamasi [1 ]
Glasner, Eli [2 ]
Glasner, Yair [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-8410501 Beer Sheva, Israel
[2] Tel Aviv Univ, Dept Math, Tel Aviv, Israel
基金
以色列科学基金会; 欧洲研究理事会;
关键词
C*-crossed products; Intermediate subalgebras; Irrational rotation crossed product; C*-simple groups; ALGEBRAS;
D O I
10.1016/j.jfa.2024.110456
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma be a countable group and (X, Gamma) a compact topological dynamical system. We study the question of the existence of an intermediate C*-subalgebra A C-r*(Gamma) < A < C(X) (sic)(r) Gamma, which is not of the form A = C(Y) (sic)(r) Gamma, corresponding to a factor map (X, Gamma) -> (Y, Gamma). Here C-r*(Gamma) is the reduced C*-algebra of Gamma and C(X) (sic)(r) Gamma is the reduced C*-crossed-pro duct of (X, Gamma). Our main results are: (1) For Gamma which is not C*-simple, when (X, Gamma) admits a Gamma-invariant probability measure, then such a sub-algebra always exists. (2) For Gamma = Z and (X, Gamma) an irrational rotation of the circle X = R/Z, we give a full description of all these non-crossed-product subalgebras. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:45
相关论文
共 18 条
[1]   On simplicity of intermediate C*-algebras [J].
Amrutam, Tattwamasi ;
Kalantar, Mehrdad .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (12) :3181-3187
[2]  
Amrutam Tattwamasi, 2019, Int. Math. Res. Not., P16193
[3]  
Brown N. P., 2008, GRAD STUD MATH, V88
[4]  
Davidson K. R., 1996, Fields Institute Monographs, V6
[5]   On simplicity of reduced C*-algebras of groups [J].
de la Harpe, Pierre .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :1-26
[6]   CIRCLE-ACTIONS ON C-ASTERISK-ALGEBRAS, PARTIAL AUTOMORPHISMS, AND A GENERALIZED PIMSNER-VOICULESCU EXACT SEQUENCE [J].
EXEL, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :361-401
[7]  
Exel R., 2017, Math. Surveys Monogr., V224
[8]  
Giordano Thierry, 2018, Advanced Courses in Mathematics - CRM Barcelona
[9]   Hilbert C*-modules and conditional expectations on crossed products [J].
Khoshkam, M .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 61 :106-118
[10]  
Murphy GJ., 1990, C*-Algebras and Operator Theory, DOI DOI 10.1016/C2009-0-22289-6