Targeting Mitophagy as a Potential Therapeutic Approach for Age-Related Bone Diseases

被引:2
作者
Zhang, Kehan [1 ,2 ,3 ]
Li, Qilin [1 ,2 ,3 ]
Zhang, Yuxiao [1 ,2 ,3 ]
Nuerlan, Gaoshaer [1 ,2 ,3 ]
Li, Yuanyuan [1 ,2 ,3 ]
Mao, Jing [1 ,2 ,3 ]
Gong, Shiqiang [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Stomatol, Wuhan 430030, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Tongji Med Coll, Sch Stomatol, Wuhan 430030, Hubei, Peoples R China
[3] Hubei Prov Key Lab Oral & Maxillofacial Dev & Rege, Wuhan 430022, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
age-related bone diseases; bone metabolism; mitochondrial dysfunction; mitophagy; osteogenesis; MITOCHONDRIA-ASSOCIATED MEMBRANES; PARKIN-MEDIATED MITOPHAGY; MESENCHYMAL STEM-CELLS; ENDOPLASMIC-RETICULUM; OSTEOGENIC DIFFERENTIATION; EXTRACELLULAR VESICLES; DISC DEGENERATION; PINK1; IMPORT; AUTOPHAGY; RECEPTOR;
D O I
10.1002/adtp.202400078
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Accumulating evidence has suggested a strong correlation between age-related bone diseases and abnormal metabolism of bone microenvironment-related cells, including mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, osteocytes, and chondrocytes. Mitochondrial dysfunction significantly impacts cell metabolism and initiates the development and progress of numerous age-related bone diseases. Mitochondrial autophagy or mitophagy, a process that selectively removes damaged or dysfunctional mitochondria, is closely associated with maintaining mitochondrial quality control and homeostasis. Recent studies indicate a decisive regulatory role of mitophagy in age-related bone diseases, thereby pointing toward the potential for manipulating mitophagy levels as a new treatment paradigm. Based on the importance and novelty of mitophagy, the present review offers an overview of the pathways involved in mitophagy and meticulously examines its function in age-related bone diseases. Various treatment methods targeting mitophagy are also discussed, mainly including biomaterials with mitophagy-modulatory capabilities, "old drugs in a new bottle" (e.g., Metformin, Rapamycin), natural compounds, endogenous factors, and stem cell-based therapies. In conclusion, these innovative approaches uncover mitophagy-related signals, pathways, and mechanisms, and may shed light on mitophagy-targeting treatments for age-related bone diseases in the future. Mitophagy deficiency is a key mechanism in aging and age-related bone diseases (such as osteoporosis, osteoarthritis, intervertebral disc degeneration, and periodontitis), which hinders the removal of dysfunctional mitochondria and hence aggravates ROS and inflammation. Therapeutic approaches targeting mitophagy have significant potential for restoring normal bone metabolism or enhancing endogenous bone regeneration. image
引用
收藏
页数:23
相关论文
共 183 条
[1]  
Martel-Pelletier Johanne, 2016, Nat Rev Dis Primers, V2, P16072, DOI [10.1038/nrdp.2016.73, 10.1038/nrdp.2016.72]
[2]   Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes [J].
Ansari, M. Y. ;
Khan, N. M. ;
Ahmad, I. ;
Haqqi, T. M. .
OSTEOARTHRITIS AND CARTILAGE, 2018, 26 (08) :1087-1097
[3]   Stem Cell Therapy for Osteoporosis [J].
Antebi, Ben ;
Pelled, Gadi ;
Gazit, Dan .
CURRENT OSTEOPOROSIS REPORTS, 2014, 12 (01) :41-47
[4]   PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis [J].
Araya, Jun ;
Tsubouchi, Kazuya ;
Sato, Nahoko ;
Ito, Saburo ;
Minagawa, Shunsuke ;
Hara, Hiromichi ;
Hosaka, Yusuke ;
Ichikawa, Akihiro ;
Saito, Nayuta ;
Kadota, Tsukasa ;
Yoshida, Masahiro ;
Fujita, Yu ;
Utsumi, Hirofumi ;
Kobayashi, Kenji ;
Yanagisawa, Haruhiko ;
Hashimoto, Mitsuo ;
Wakui, Hiroshi ;
Ishikawa, Takeo ;
Numata, Takanori ;
Kaneko, Yumi ;
Asano, Hisatoshi ;
Yamashita, Makoto ;
Odaka, Makoto ;
Morikawa, Toshiaki ;
Nishimura, Stephen L. ;
Nakayama, Katsutoshi ;
Kuwano, Kazuyoshi .
AUTOPHAGY, 2019, 15 (03) :510-526
[5]   The pathways of mitophagy for quality control and clearance of mitochondria [J].
Ashrafi, G. ;
Schwarz, T. L. .
CELL DEATH AND DIFFERENTIATION, 2013, 20 (01) :31-42
[6]   MitophAging: Mitophagy in Aging and Disease [J].
Bakula, Daniela ;
Scheibye-Knudsen, Morten .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
[7]   PINK1/Parkin Mediated Mitophagy, Ca2+ Signalling, and ER-Mitochondria Contacts in Parkinson's Disease [J].
Barazzuol, Lucia ;
Giamogante, Flavia ;
Brini, Marisa ;
Cali, Tito .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (05)
[8]   FKBP8 recruits LC3A to mediate Parkin-independent mitophagy [J].
Bhujabal, Zambarlal ;
Birgisdottir, Asa B. ;
Sjottem, Eva ;
Brenne, Hanne B. ;
Overvatn, Aud ;
Habisov, Sabrina ;
Kirkin, Vladimir ;
Lamark, Trond ;
Johansen, Terje .
EMBO REPORTS, 2017, 18 (06) :947-961
[9]   The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy [J].
Bingol, Baris ;
Tea, Joy S. ;
Phu, Lilian ;
Reichelt, Mike ;
Bakalarski, Corey E. ;
Song, Qinghua ;
Foreman, Oded ;
Kirkpatrick, Donald S. ;
Sheng, Morgan .
NATURE, 2014, 510 (7505) :370-+
[10]   The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation [J].
Boonrungsiman, Suwimon ;
Gentleman, Eileen ;
Carzaniga, Raffaella ;
Evans, Nicholas D. ;
McComb, David W. ;
Porter, Alexandra E. ;
Stevens, Molly M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (35) :14170-14175