Automatic liver segmentation from CT volumes based on multi-view information fusion and condition random fields

被引:3
作者
Xia, Zhen [1 ]
Liao, Miao [2 ]
Di, Shuanhu [3 ]
Zhao, Yuqian [4 ]
Liang, Wei [2 ]
Xiong, Neal N. [2 ]
机构
[1] Natl Univ Def Technol, Sch Comp, Natl Lab Parallel & Distributed Proc, Changsha 410073, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411000, Peoples R China
[3] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha 410073, Peoples R China
[4] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Liver segmentation; CT images; Deep learning; Multi-view information fusion; ALGORITHM;
D O I
10.1016/j.optlastec.2024.111298
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Liver segmentation from CT images is a fundamental and essential step for many clinical applications, such as disease diagnosis, surgery navigator, and radiation therapy. Due to the limited computing resources, automatic and accurate liver segmentation from 3D CT volume is still a challenge task. In this paper, we propose an automatic liver segmentation method by fusing multi-view information. First, a 2D network combined with Dual Self-Attention (DSA) is proposed and applied on multi-sectional 2D slices reconstructed from axial, coronal, and sagittal directions. Then, to generate 3D segmentation results, a lightweight 3D network is designed to fuse the segmentation results from different viewing. Finally, a full connection condition random field is used to refine the 3D results. The proposed method is evaluated on four public datasets, including 3DIRCADb, CHAOS, Sliver07, and LiTS. The experimental results show that the proposed method can accurately segment the liver region for the datasets with large or small cases, as well as healthy or lesion livers. The dice values obtained by the proposed method on four datasets are 0.952, 0.969, 0.958, and 0.964, respectively, which are better than those obtained by many existing ones.
引用
收藏
页数:12
相关论文
共 55 条
[1]   Classification of hepatic lesions using the matching metric [J].
Adcock, Aaron ;
Rubin, Daniel ;
Carlsson, Gunnar .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 121 :36-42
[2]   TPCNN: Two-path convolutional neural network for tumor and liver segmentation in CT images using a novel encoding approach [J].
Aghamohammadi, Amirhossein ;
Ranjbarzadeh, Ramin ;
Naiemi, Fatemeh ;
Mogharrebi, Marzieh ;
Dorosti, Shadi ;
Bendechache, Malika .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 183
[3]   RETRACTED: Efficient Liver Segmentation from Computed Tomography Images Using Deep Learning (Retracted Article) [J].
Ahmad, Mubashir ;
Qadri, Syed Furqan ;
Ashraf, M. Usman ;
Subhi, Khalid ;
Khan, Salabat ;
Zareen, Syeda Shamaila ;
Qadri, Salman .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
[4]   Deep Belief Network Modeling for Automatic Liver Segmentation [J].
Ahmad, Mubashir ;
Ai, Danni ;
Xie, Guiwang ;
Qadri, Syed Furqan ;
Song, Hong ;
Huang, Yong ;
Wang, Yongtian ;
Yang, Jian .
IEEE ACCESS, 2019, 7 :20585-20595
[5]   Liver segmentation from computed tomography images using cascade deep learning [J].
Araujo, Jose Denes Lima ;
da Cruz, Luana Batista ;
Diniz, Joao Otavio Bandeira ;
Ferreira, Jonnison Lima ;
Silva, Aristofanes Correa ;
de Paiva, Anselmo Cardoso ;
Gattass, Marcelo .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
[6]   The Liver Tumor Segmentation Benchmark (LiTS) [J].
Bilic, Patrick ;
Christ, Patrick ;
Li, Hongwei Bran ;
Vorontsov, Eugene ;
Ben-Cohen, Avi ;
Kaissis, Georgios ;
Szeskin, Adi ;
Jacobs, Colin ;
Mamani, Gabriel Efrain Humpire ;
Chartrand, Gabriel ;
Lohoefer, Fabian ;
Holch, Julian Walter ;
Sommer, Wieland ;
Hofmann, Felix ;
Hostettler, Alexandre ;
Lev-Cohain, Naama ;
Drozdzal, Michal ;
Amitai, Michal Marianne ;
Vivanti, Refael ;
Sosna, Jacob ;
Ezhov, Ivan ;
Sekuboyina, Anjany ;
Navarro, Fernando ;
Kofler, Florian ;
Paetzold, Johannes C. ;
Shit, Suprosanna ;
Hu, Xiaobin ;
Lipkova, Jana ;
Rempfler, Markus ;
Piraud, Marie ;
Kirschke, Jan ;
Wiestler, Benedikt ;
Zhang, Zhiheng ;
Huelsemeyer, Christian ;
Beetz, Marcel ;
Ettlinger, Florian ;
Antonelli, Michela ;
Bae, Woong ;
Bellver, Miriam ;
Bi, Lei ;
Chen, Hao ;
Chlebus, Grzegorz ;
Dam, Erik B. ;
Dou, Qi ;
Fu, Chi-Wing ;
Georgescu, Bogdan ;
Giro-I-Nieto, Xavier ;
Gruen, Felix ;
Han, Xu ;
Heng, Pheng-Ann .
MEDICAL IMAGE ANALYSIS, 2023, 84
[7]  
Kaluva KC, 2018, Arxiv, DOI [arXiv:1802.02182, DOI 10.48550/ARXIV.1802.02182]
[8]  
Chen J., 2021, arXiv, DOI DOI 10.48550/ARXIV.2102.04306
[9]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[10]   A deep residual attention-based U-Net with a biplane joint method for liver segmentation from CT scans [J].
Chen, Ying ;
Zheng, Cheng ;
Zhou, Taohui ;
Feng, Longfeng ;
Liu, Lan ;
Zeng, Qiao ;
Wang, Guoqing .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 152