AI-Powered Human-Computer Interaction Assisting Early Identification of Emotional and Facial Symptoms of Autism Spectrum Disorder in Children: "A Deep Learning-Based Enhanced Facial Feature Recognition System"

被引:1
作者
ElMahalawy, Jasmine [1 ]
ElSwaify, Yehia A. [1 ]
Elliboudy, Diaa [1 ]
Abbas, Omar M. [1 ]
Moustafa, Nour [1 ]
Wael, Nayera [1 ]
机构
[1] Arab Acad Sci Technol & Maritime Transport, Dept Comp Engn, Alexandria, Egypt
来源
2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND SMART INNOVATION, ICMISI 2024 | 2024年
关键词
autism spectrum disorder (ASD); Deep Learning; Convolutional Neural Networks (CNNs); Facial Image Analysis; Early Detection; Human-Computer Interaction (HCI); Artificial Intelligence (AI); Transfer Learning; Emotional and Facial Symptom Identification; YOLO Architecture; Augmentation Techniques; Facial Expression Recognition; Assistive Technology;
D O I
10.1109/ICMISI61517.2024.10580320
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
autism spectrum disorder (ASD) diagnosis often benefits from early identification. This paper proposes an enhanced deep learning model for analyzing facial features in children to aid in early ASD detection. The model integrates the YOLO architecture with convolutional neural networks (CNNs) employing transfer learning. Trained on a Kaggle dataset of 2,836 facial images (1,418 autistic and 1,418 non-autistic children), the model achieves high accuracy with MobileNet (95%), Xception (94%), and InceptionV3 (89%). This approach has the potential to improve existing detection methods for ASD and contribute to better human-computer interaction for individuals with special needs. Notably, the model demonstrates high specificity, effectively distinguishing autistic from non-autistic cases across various facial expressions in benchmark datasets.
引用
收藏
页码:87 / 93
页数:7
相关论文
共 19 条
[1]  
Ahmed ZAT, 2020, PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), P160, DOI [10.1109/ICICT48043.2020.9112493, 10.1109/icict48043.2020.9112493]
[2]   Improved Transfer-Learning-Based Facial Recognition Framework to Detect Autistic Children at an Early Stage [J].
Akter, Tania ;
Ali, Mohammad Hanif ;
Khan, Md. Imran ;
Satu, Md. Shahriare ;
Uddin, Md. Jamal ;
Alyami, Salem A. ;
Ali, Sarwar ;
Azad, A. K. M. ;
Moni, Mohammad Ali .
BRAIN SCIENCES, 2021, 11 (06)
[3]   Deep Learning Algorithms to Identify Autism Spectrum Disorder in Children-Based Facial Landmarks [J].
Alkahtani, Hasan ;
Aldhyani, Theyazn H. H. ;
Alzahrani, Mohammed Y. .
APPLIED SCIENCES-BASEL, 2023, 13 (08)
[4]   Developing a Recognition System for Classifying COVID-19 Using a Convolutional Neural Network Algorithm [J].
Alsaade, Fawaz Waselallah ;
Aldhyani, Theyazn H. H. ;
Al-Adhaileh, Mosleh Hmoud .
CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01) :805-819
[5]  
[Anonymous], MU Researchers Identify Differences in Facial Characteristics of Children with Autism Compared to Typically Developing Children News Bureau
[6]   Aberrant "default mode" functional connectivity in schizophrenia [J].
Garrity, Abigail G. ;
Pearlson, Godfrey D. ;
McKiernan, Kristen ;
Lloyd, Dan ;
Kiehl, Kent A. ;
Calhoun, Vince D. .
AMERICAN JOURNAL OF PSYCHIATRY, 2007, 164 (03) :450-457
[7]   Children with autism spectrum disorder produce more ambiguous and less socially meaningful facial expressions: an experimental study using random forest classifiers [J].
Grossard, Charline ;
Dapogny, Arnaud ;
Cohen, David ;
Bernheim, Sacha ;
Juillet, Estelle ;
Hamel, Fanny ;
Hun, Stephanie ;
Bourgeois, Jeremy ;
Pellerin, Hugues ;
Serret, Sylvie ;
Bailly, Kevin ;
Chaby, Laurence .
MOLECULAR AUTISM, 2020, 11 (01)
[8]   Role of Artificial Intelligence for Autism Diagnosis Using DTI and fMRI: A Survey [J].
Helmy, Eman ;
Elnakib, Ahmed ;
ElNakieb, Yaser ;
Khudri, Mohamed ;
Abdelrahim, Mostafa ;
Yousaf, Jawad ;
Ghazal, Mohammed ;
Contractor, Sohail ;
Barnes, Gregory Neal ;
El-Baz, Ayman .
BIOMEDICINES, 2023, 11 (07)
[9]  
Jogin Manjunath, 2018, 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), P2319, DOI 10.1109/RTEICT42901.2018.9012507
[10]   SoundFields: A Virtual Reality Game Designed to Address Auditory Hypersensitivity in Individuals with Autism Spectrum Disorder [J].
Johnston, Daniel ;
Egermann, Hauke ;
Kearney, Gavin .
APPLIED SCIENCES-BASEL, 2020, 10 (09)