High-Throughput In Vivo Screening Identifies Differential Influences on mRNA Lipid Nanoparticle Immune Cell Delivery by Administration Route

被引:6
作者
Hamilton, Alex G. [1 ]
Swingle, Kelsey L. [1 ]
Thatte, Ajay S. [1 ]
Mukalel, Alvin J. [1 ]
Safford, Hannah C. [1 ]
Billingsley, Margaret M. [1 ]
El-Mayta, Rakan D. [1 ]
Han, Xuexiang [1 ]
Nachod, Benjamin E. [1 ]
Joseph, Ryann A. [1 ]
Metzloff, Ann E. [1 ]
Mitchell, Michael J. [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ]
机构
[1] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Penn, Ctr Precis Engn Hlth, Philadelphia, PA 19104 USA
[3] Univ Penn, Inst RNA Innovat, Philadelphia, PA 19104 USA
[4] Univ Penn, Abramson Canc Ctr, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Ctr Cellular Immunotherapies, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] Univ Penn, Inst Immunol, Perelman Sch Med, Philadelphia, PA 19104 USA
[7] Univ Penn, Cardiovasc Inst, Perelman Sch Med, Philadelphia, PA 19104 USA
[8] Univ Penn, Inst Regenerat Med, Perelman Sch Med, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
lipid nanoparticles; mRNA; in vivo; high-throughput screening; immunoengineering; vaccines; NONVIRAL VECTORS; GENE DELIVERY; THERAPY; THERAPEUTICS; FORMULATIONS; EXPRESSION; DISCOVERY; VITRO;
D O I
10.1021/acsnano.4c01171
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Immune modulation through the intracellular delivery of nucleoside-modified mRNA to immune cells is an attractive approach for in vivo immunoengineering, with applications in infectious disease, cancer immunotherapy, and beyond. Lipid nanoparticles (LNPs) have come to the fore as a promising nucleic acid delivery platform, but LNP design criteria remain poorly defined, making the rate-limiting step for LNP discovery the screening process. In this study, we employed high-throughput in vivo LNP screening based on molecular barcoding to investigate the influence of LNP composition on immune tropism with applications in vaccines and systemic immunotherapies. Screening a large LNP library under both intramuscular (i.m.) and intravenous (i.v.) injection, we observed differential influences on LNP uptake by immune populations across the two administration routes, gleaning insight into LNP design criteria for in vivo immunoengineering. In validation studies, the lead LNP formulation for i.m. administration demonstrated substantial mRNA translation in the spleen and draining lymph nodes with a more favorable biodistribution profile than LNPs formulated with the clinical standard ionizable lipid DLin-MC3-DMA (MC3). The lead LNP formulations for i.v. administration displayed potent immune transfection in the spleen and peripheral blood, with one lead LNP demonstrating substantial transfection of splenic dendritic cells and another inducing substantial transfection of circulating monocytes. Altogether, the immunotropic LNPs identified by high-throughput in vivo screening demonstrated significant promise for both locally- and systemically-delivered mRNA and confirmed the value of the LNP design criteria gleaned from our screening process, which could potentially inform future endeavors in mRNA vaccine and immunotherapy applications.
引用
收藏
页码:16151 / 16165
页数:15
相关论文
共 93 条
  • [1] Algorithm 761: Scattered-data surface fitting that has the accuracy of a cubic polynomial
    Akima, H
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (03): : 362 - 371
  • [2] A combinatorial library of lipid-like materials for delivery of RNAi therapeutics
    Akinc, Akin
    Zumbuehl, Andreas
    Goldberg, Michael
    Leshchiner, Elizaveta S.
    Busini, Valentina
    Hossain, Naushad
    Bacallado, Sergio A.
    Nguyen, David N.
    Fuller, Jason
    Alvarez, Rene
    Borodovsky, Anna
    Borland, Todd
    Constien, Rainer
    de Fougerolles, Antonin
    Dorkin, J. Robert
    Jayaprakash, K. Narayanannair
    Jayaraman, Muthusamy
    John, Matthias
    Koteliansky, Victor
    Manoharan, Muthiah
    Nechev, Lubomir
    Qin, June
    Racie, Timothy
    Raitcheva, Denitza
    Rajeev, Kallanthottathil G.
    Sah, Dinah W. Y.
    Soutschek, Juergen
    Toudjarska, Ivanka
    Vornlocher, Hans-Peter
    Zimmermann, Tracy S.
    Langer, Robert
    Anderson, Daniel G.
    [J]. NATURE BIOTECHNOLOGY, 2008, 26 (05) : 561 - 569
  • [3] [Anonymous], FDA INVESTIGATING SE
  • [4] [Anonymous], 2023, IMAGEMAGICK
  • [5] [Anonymous], 2022, R version 4.2.1
  • [6] Aphalo P. J., 2022, GGPMISC
  • [7] Auguie B., 2017, GRIDEXTRA
  • [8] Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine
    Baden, Lindsey R.
    El Sahly, Hana M.
    Essink, Brandon
    Kotloff, Karen
    Frey, Sharon
    Novak, Rick
    Diemert, David
    Spector, Stephen A.
    Rouphael, Nadine
    Creech, C. Buddy
    McGettigan, John
    Khetan, Shishir
    Segall, Nathan
    Solis, Joel
    Brosz, Adam
    Fierro, Carlos
    Schwartz, Howard
    Neuzil, Kathleen
    Corey, Larry
    Gilbert, Peter
    Janes, Holly
    Follmann, Dean
    Marovich, Mary
    Mascola, John
    Polakowski, Laura
    Ledgerwood, Julie
    Graham, Barney S.
    Bennett, Hamilton
    Pajon, Rolando
    Knightly, Conor
    Leav, Brett
    Deng, Weiping
    Zhou, Honghong
    Han, Shu
    Ivarsson, Melanie
    Miller, Jacqueline
    Zaks, Tal
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (05) : 403 - 416
  • [9] A Facile Method for the Removal of dsRNA Contaminant from In Vitro-Transcribed mRNA
    Baiersdoerfer, Markus
    Boros, Gabor
    Muramatsu, Hiromi
    Mahiny, Azita
    Vlatkovic, Irena
    Sahin, Ugur
    Kariko, Katalin
    [J]. MOLECULAR THERAPY-NUCLEIC ACIDS, 2019, 15 : 26 - 35
  • [10] Nanoparticle protein corona: from structure and function to therapeutic targeting
    Bashiri, Ghazal
    Padilla, Marshall S.
    Swingle, Kelsey L.
    Shepherd, Sarah J.
    Mitchell, Michael J.
    Wang, Karin
    [J]. LAB ON A CHIP, 2023, 23 (06) : 1432 - 1466