Spatio-functional parcellation of resting state fMRI

被引:0
作者
Parmar, Harshit [1 ]
Nutter, Brian [1 ]
Mitra, Sunanda [1 ]
Long, Rodney [2 ]
Antani, Sameer [2 ]
机构
[1] Texas Tech Univ, Dept Elect & Comp Engn, Lubbock, TX 79409 USA
[2] NIH, Natl Lib Med, Bldg 10, Bethesda, MD 20892 USA
来源
2024 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, SSIAI | 2024年
基金
美国国家卫生研究院;
关键词
resting state fMRI; clustering; k-means; MRI DATA; BRAIN; CONNECTIVITY;
D O I
10.1109/SSIAI59505.2024.10508652
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Resting state functional Magnetic Resonance Imaging (rs-fMRI) is used to obtain spontaneous activation within the human brain in the absence of specific tasks. Analysis of the rs-fMRI data required spatially and functionally homogenous parcellation of the whole brain based on underlying temporal fluctuations. Commonly used parcellation schemes have a tradeoff between intra-cluster functional similarity and alignment with anatomical regions. In this article, we present a clustering scheme for rs-fMRI data that obtains spatially and functionally homogenous clusters. Results show that the proposed multistage approach can identify various brain networks. Moreover, the functional homogeneity of the clusters is shown to be better than those found with functional atlas and simple k-means clusters. The spatial homogeneity is shown to be better than Independent Component Analysis (ICA), and simple k-means clusters.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 17 条
[1]   Investigations into resting-state connectivity using independent component analysis [J].
Beckmann, CF ;
DeLuca, M ;
Devlin, JT ;
Smith, SM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1457) :1001-1013
[2]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[3]   Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 13 (01) :43-53
[4]   A method for making group inferences from functional MRI data using independent component analysis [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 14 (03) :140-151
[5]  
Chen TS, 2005, I S INTELL SIG PROC, P405
[6]   A whole brain fMRI atlas generated via spatially constrained spectral clustering [J].
Craddock, R. Cameron ;
James, G. Andrew ;
Holtzheimer, Paul E., III ;
Hu, Xiaoping P. ;
Mayberg, Helen S. .
HUMAN BRAIN MAPPING, 2012, 33 (08) :1914-1928
[7]   Evaluation of the spatial variability in the major resting-state networks across human brain functional atlases [J].
Doucet, Gaelle E. ;
Lee, Won Hee ;
Frangou, Sophia .
HUMAN BRAIN MAPPING, 2019, 40 (15) :4577-4587
[8]   Detection of spatial activation patterns as unsupervised segmentation of fMRI data [J].
Golland, Polina ;
Golland, Yulia ;
Malach, Rafael .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2007, PT 1, PROCEEDINGS, 2007, 4791 :110-+
[9]   White Matter fMRI Activation Cannot Be Treated as a Nuisance Regressor: Overcoming a Historical Blind Spot [J].
Grajauskas, Lukas A. ;
Frizzell, Tory ;
Song, Xiaowei ;
D'Arcy, Ryan C. N. .
FRONTIERS IN NEUROSCIENCE, 2019, 13
[10]   Characterization of the hemodynamic response function in white matter tracts for event-related fMRI [J].
Li, Muwei ;
Newton, Allen T. ;
Anderson, Adam W. ;
Ding, Zhaohua ;
Gore, John C. .
NATURE COMMUNICATIONS, 2019, 10 (1)