Closing the Loop: Unexamined Performance Trade-Offs of Integrating Direct Air Capture with (Bi)carbonate Electrolysis

被引:10
作者
Almajed, Hussain M. [1 ,2 ]
Kas, Recep [3 ]
Brimley, Paige [1 ,2 ]
Crow, Allison M. [1 ,2 ,3 ]
Somoza-Tornos, Ana [4 ]
Hodge, Bri-Mathias [3 ,5 ,6 ]
Burdyny, Thomas E. [4 ]
Smith, Wilson A. [1 ,2 ,3 ]
机构
[1] Univ Colorado Boulder, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[2] Univ Colorado Boulder, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA
[3] Natl Renewable Energy Lab, Golden, CO 80401 USA
[4] Delft Univ Technol, Dept Chem Engn, NL-2629 HZ Delft, Netherlands
[5] Univ Colorado Boulder, Renewable & Sustainable Energy Inst, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA
[6] Univ Colorado Boulder, Dept Appl Math, Boulder, CO 80309 USA
来源
ACS ENERGY LETTERS | 2024年 / 9卷 / 05期
关键词
CO2; CAPTURE; BICARBONATE;
D O I
10.1021/acsenergylett.4c00807
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 from carbonate-based capture solutions requires a substantial energy input. Replacing this step with (bi)carbonate electrolysis has been commonly proposed as an efficient alternative that coproduces CO/syngas. Here, we assess the feasibility of directly integrating air contactors with (bi)carbonate electrolyzers by leveraging process, multiphysics, microkinetic, and technoeconomic models. We show that the copresence of CO32- with HCO3- in the contactor effluent greatly diminishes the electrolyzer performance and eventually results in a reduced CO2 capture fraction to <= 1%. Additionally, we estimate suitable effluents for (bi)carbonate electrolysis to require 5-14 times larger contactors than conventionally needed contactors, leading to unfavorable process economics. Notably, we show that the regeneration of the capture solvent inside (bi)carbonate electrolyzers is insufficient for CO2 recapture. Thus, we suggest process modifications that would allow this route to be operationally feasible. Overall, this work sheds light on the practical operation of integrated direct air capture with (bi)carbonate electrolysis.
引用
收藏
页码:2472 / 2483
页数:12
相关论文
共 35 条
[1]   Evaluating the techno-economic potential of defossilized air-to-syngas pathways [J].
Almajed, Hussain M. ;
Guerra, Omar J. ;
Smith, Wilson A. ;
Hodge, Bri-Mathias ;
Somoza-Tornos, Ana .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (12) :6127-6146
[2]   Direct capture and conversion of CO2 from air by growing a cyanobacterial consortium at pH up to 11.2 [J].
Ataeian, Maryam ;
Liu, Yihua ;
Canon-Rubio, Karen Andrea ;
Nightingale, Michael ;
Strous, Marc ;
Vadlamani, Agasteswar .
BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (07) :1604-1611
[3]   A sorbent-focused techno-economic analysis of direct air capture [J].
Azarabadi, Habib ;
Lackner, Klaus S. .
APPLIED ENERGY, 2019, 250 :959-975
[4]  
Benson H. E., 1979, Removal of Acid Gases from Hot Gas Mixtures, Patent No. [US4160810A, 4160810]
[5]   The Role of Direct Air Capture in Mitigation of Anthropogenic Greenhouse Gas Emissions [J].
Beuttler, Christoph ;
Charles, Louise ;
Wurzbacher, Jan .
FRONTIERS IN CLIMATE, 2019, 1
[6]   CO2 capture with potassium carbonate solutions: A state-of-the-art review [J].
Borhani, Tohid Nejad Ghaffar ;
Azarpour, Abbas ;
Akbari, Vahid ;
Alwi, Sharifah Rafidah Wan ;
Manan, Zainuddin Abdul .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 41 :142-162
[7]  
Carbon Engineering, CarbonEngineering
[8]  
Climeworks, Climeworks
[9]   The Economics of Electrochemical Syngas Production via Direct Air Capture [J].
Debergh, Pieterjan ;
Gutierrez-Sanchez, Oriol ;
Khan, Mohammed Nazeer ;
Birdja, Yuvraj Y. ;
Pant, Deepak ;
Bulut, Metin .
ACS ENERGY LETTERS, 2023, 8 (08) :3398-3403
[10]   CO2 extraction from seawater using bipolar membrane electrodialysis [J].
Eisaman, Matthew D. ;
Parajuly, Keshav ;
Tuganov, Alexander ;
Eldershaw, Craig ;
Chang, Norine ;
Littau, Karl A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (06) :7346-7352