Batch Differentiable Pose Refinement for In-The-Wild Camera/LiDAR Extrinsic Calibration

被引:0
|
作者
Fu, Lanke Frank Tarimo [1 ]
Fallon, Maurice [1 ]
机构
[1] Univ Oxford, Oxford, England
来源
CONFERENCE ON ROBOT LEARNING, VOL 229 | 2023年 / 229卷
关键词
Sensor Fusion; Extrinsic Calibration; Differentiable Optimization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate camera to LiDAR (Light Detection and Ranging) extrinsic calibration is important for robotic tasks carrying out tight sensor fusion - such as target tracking and odometry. Calibration is typically performed before deployment in controlled conditions using calibration targets, however, this limits scalability and subsequent recalibration. We propose a novel approach for target-free camera-LiDAR calibration using end-to-end direct alignment which doesn't need calibration targets. Our batched formulation enhances sample efficiency during training and robustness at inference time. We present experimental results, on publicly available real-world data, demonstrating 1.6cm/0.07 degrees median accuracy when transferred to unseen sensors from held-out data sequences. We also show state-of-the-art zero-shot transfer to unseen cameras, LiDARs, and environments.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Extrinsic Calibration of Camera to LIDAR using a Differentiable Checkerboard Model
    Fu, Lanke Frank Tarimo
    Chebrolu, Nived
    Fallon, Maurice
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 1825 - 1831
  • [2] Tame a Wild Camera: In-the-Wild Monocular Camera Calibration
    Zhu, Shengjie
    Kumar, Abhinav
    Hu, Masa
    Liu, Xiaoming
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] CMRNext: Camera to LiDAR Matching in the Wild for Localization and Extrinsic Calibration
    Cattaneo, Daniele
    Valada, Abhinav
    IEEE Transactions on Robotics, 2025, 41 : 1995 - 2013
  • [4] Extrinsic Calibration of Lidar and Camera with Polygon
    Liao, Qinghai
    Chen, Zhenyong
    Liu, Yang
    Wang, Zhe
    Liu, Ming
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2018, : 200 - 205
  • [5] Targetless Multiple Camera-LiDAR Extrinsic Calibration using Object Pose Estimation
    Yoon, Byung-Hyun
    Jeong, Hyeon-Woo
    Choi, Kang-Sun
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 13377 - 13383
  • [6] Acoustic Camera Pose Refinement Using Differentiable Rendering
    Wu, Chujie
    Wang, Yusheng
    Ji, Yooghoon
    Tsuchiya, Hiroshi
    Asama, Hajime
    Yamashita, Atsushi
    2023 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION, SII, 2023,
  • [7] An Extrinsic Calibration Tool for Radar, Camera and Lidar
    Domhof, Joris
    Kooij, Julian F. P.
    Gavrila, Dariu M.
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 8107 - 8113
  • [8] Extrinsic Calibration of a Small FoV LiDAR and a Camera
    Zhao, Yang
    Huang, Kaihong
    Lu, Huimin
    Xiao, Junhao
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 3915 - 3920
  • [9] Joint Camera Intrinsic and LiDAR-Camera Extrinsic Calibration
    Yan, Guohang
    He, Feiyu
    Shi, Chunlei
    Wei, Pengjin
    Cai, Xinyu
    Li, Yikang
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 11446 - 11452
  • [10] Sample Pose Augmentation and Adaptive Weight-Based Refinement for 3-D LiDAR-Camera Extrinsic Calibration Using an Orthogonal Trihedron
    Choi, Yeongyu
    Park, Ju H.
    Jung, Ho-Youl
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14