Weather based wheat yield prediction using machine learning

被引:0
|
作者
Gupta, Shreya [1 ]
Vashisth, Ananta [1 ]
Krishnan, P. [1 ]
Lama, Achal [2 ]
SHIVPRASAD
Aravind, K. S. [1 ]
机构
[1] ICAR Indian Agr Res Inst, New Delhi 110012, India
[2] ICAR Indian Agr Stat Res Inst, New Delhi 110012, India
来源
MAUSAM | 2024年 / 75卷 / 03期
关键词
Weather variable; Machine learning model; Support vector regression; Least absolute shrinkage and Selection operator; Stepwise multi linear regression; Yield prediction; VARIABLES;
D O I
10.54302/mausam.v75i3.5606
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Wheat crops are highly affected by the influence of weather parameters. Thus, there is a need to develop and validate weather -based models using machine learning for its reliable prediction. Wheat yield and weather data during the crop growing period were collected from IARI, New Delhi, Hisar, Amritsar, Ludhiana and Patiala. The yield prediction model was developed using stepwise multi linear regression (SMLR), support vector regression (SVR), least absolute shrinkage and selection operator (LASSO) and hybrid machine learning model LASSO-SVR and SMLRSVR in R software. Analysis was done by fixing 70% of the data for calibration and the remaining 30% data for validation. Wheat yield prediction models for study areas were developed using long term crop yield data along with long period daily weather data from the 46 th to 15 th standard meteorological weeks. On examining these models for wheat yield prediction for different locations, LASSO performed best having nRMSE value ranged between 0.6 % for Patiala to 4.8% for Ludhiana. The model performance of SVR is increased if a hybrid model in combination with LASSO and SMLR is applied. The hybrid model LASSO-SVR has shown more improvement in SVR model compared with SMLR-SVR.
引用
收藏
页码:639 / 648
页数:10
相关论文
共 50 条
  • [21] Prediction of Field-Scale Wheat Yield Using Machine Learning Method and Multi-Spectral UAV Data
    Bian, Chaofa
    Shi, Hongtao
    Wu, Suqin
    Zhang, Kefei
    Wei, Meng
    Zhao, Yindi
    Sun, Yaqin
    Zhuang, Huifu
    Zhang, Xuewei
    Chen, Shuo
    REMOTE SENSING, 2022, 14 (06)
  • [22] The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms
    Zhao, Yanxi
    Xiao, Dengpan
    Bai, Huizi
    Tang, Jianzhao
    Liu, De Li
    Qi, Yongqing
    Shen, Yanjun
    AGRICULTURE-BASEL, 2023, 13 (01):
  • [23] Multimodal Machine Learning Based Crop Recommendation and Yield Prediction Model
    Gopi, P. S. S.
    Karthikeyan, M.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (01) : 313 - 326
  • [24] Machine and deep learning-based wheat yield prediction: the critical role of soil moisture and remote sensing data
    Shayan Hosseinpour
    Hemmatollah Pirdashti
    Danial Hosseinpour
    Hesam Mousavi
    Saeed Mohammadpour
    Modeling Earth Systems and Environment, 2025, 11 (4)
  • [25] Enhancing Smallholder Wheat Yield Prediction through Sensor Fusion and Phenology with Machine Learning and Deep Learning Methods
    Tesfaye, Andualem Aklilu
    Awoke, Berhan Gessesse
    Sida, Tesfaye Shiferaw
    Osgood, Daniel E.
    AGRICULTURE-BASEL, 2022, 12 (09):
  • [26] Developing automated machine learning approach for fast and robust crop yield prediction using a fusion of remote sensing, soil, and weather dataset
    Kheir, Ahmed M. S.
    Govind, Ajit
    Nangia, Vinay
    Devkota, Mina
    Elnashar, Abdelrazek
    Omar, Mohie El Din
    Feike, Til
    ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2024, 6 (04):
  • [27] Local Field-Scale Winter Wheat Yield Prediction Using VENμS Satellite Imagery and Machine Learning Techniques
    Chiu, Marco Spencer
    Wang, Jinfei
    REMOTE SENSING, 2024, 16 (17)
  • [28] Development of multistage crop yield estimation model using machine learning and deep learning techniques
    Aravind, K. S.
    Vashisth, Ananta
    Krishnan, P.
    Kundu, Monika
    Prasad, Shiv
    Meena, M. C.
    Lama, Achal
    Das, Pankaj
    Das, Bappa
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2025, 69 (02) : 499 - 515
  • [29] Analysis of agricultural crop yield prediction using statistical techniques of machine learning
    Pant, Janmejay
    Pant, R. P.
    Singh, Manoj Kumar
    Singh, Devesh Pratap
    Pant, Himanshu
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 10922 - 10926
  • [30] Alfalfa yield prediction using machine learning and UAV multispectral remote sensing
    Yan H.
    Zhuo Y.
    Li M.
    Wang Y.
    Guo H.
    Wang J.
    Li C.
    Ding F.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (11): : 64 - 71