Dynamic equation for evaporative cooling of trapped atoms in microgravity

被引:0
作者
Yuan, Xiao-long [1 ]
Yu, Jiachen [1 ]
Li, Hui [1 ]
Wu, Biao [1 ]
Xiong, Wei [1 ]
Zhou, Xiaoji [1 ]
Chen, Xuzong [1 ]
机构
[1] Peking Univ, Inst Quantum Elect, Sch Elect, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
BOSE-EINSTEIN CONDENSATION; QUANTUM KINETIC-THEORY; GAS; SIMULATION; HYDROGEN;
D O I
10.1103/PhysRevA.109.043315
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, to investigate how atoms evaporate and cool in microgravity environments of the space station, we have developed the dynamic equation for evaporative cooling of trapped atoms and obtained the analytical expression of atomic temperature with respect to trapping laser parameters and gravitational acceleration. In our model, the evaporation of atoms is equivalent to applying a damping force to the trapped atoms, and the evaporative cooling process of trapped atoms is comprehended as the damped oscillation of trapped atoms in the optical dipole traps. By introducing the gravity in our model, we obtained the analytical model of temperature variation with gravity after cooling, and the theoretical results agree well with the evaporation experiment of rubidium -87 atoms on the ground. Our theoretical results show that, compared with the atomic evaporative cooling experiment on the ground, the microgravity environment of the space station can achieve cooler atomic gases when the losses of atoms, such as the one -body loss caused by background -gas collisions and the threebody recombination loss caused by interatomic inelastic collisions, can be ignored.
引用
收藏
页数:6
相关论文
共 54 条
[1]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[2]   Observation of Bose-Einstein condensates in an Earth-orbiting research lab [J].
Aveline, David C. ;
Williams, Jason R. ;
Elliott, Ethan R. ;
Dutenhoffer, Chelsea ;
Kellogg, James R. ;
Kohel, James M. ;
Lay, Norman E. ;
Oudrhiri, Kamal ;
Shotwell, Robert F. ;
Yu, Nan ;
Thompson, Robert J. .
NATURE, 2020, 582 (7811) :193-197
[3]   All-optical formation of an atomic Bose-Einstein condensate [J].
Barrett, MD ;
Sauer, JA ;
Chapman, MS .
PHYSICAL REVIEW LETTERS, 2001, 87 (01)
[4]   All-optical production of chromium Bose-Einstein condensates [J].
Beaufils, Q. ;
Chicireanu, R. ;
Zanon, T. ;
Laburthe-Tolra, B. ;
Marechal, E. ;
Vernac, L. ;
Keller, J. -C. ;
Gorceix, O. .
PHYSICAL REVIEW A, 2008, 77 (06)
[5]   Kinetics for evaporative cooling of a trapped gas [J].
BergSorensen, K .
PHYSICAL REVIEW A, 1997, 55 (02) :1281-1287
[6]   Evaporative cooling of a small number of atoms in a single-beam microscopic dipole trap [J].
Bourgain, R. ;
Pellegrino, J. ;
Fuhrmanek, A. ;
Sortais, Y. R. P. ;
Browaeys, A. .
PHYSICAL REVIEW A, 2013, 88 (02)
[7]   Bose-Einstein condensation of lithium: Observation of limited condensate number [J].
Bradley, CC ;
Sackett, CA ;
Hulet, RG .
PHYSICAL REVIEW LETTERS, 1997, 78 (06) :985-989
[8]   EVIDENCE OF BOSE-EINSTEIN CONDENSATION IN AN ATOMIC GAS WITH ATTRACTIVE INTERACTIONS [J].
BRADLEY, CC ;
SACKETT, CA ;
TOLLETT, JJ ;
HULET, RG .
PHYSICAL REVIEW LETTERS, 1995, 75 (09) :1687-1690
[9]   Observation of ultracold atomic bubbles in orbital microgravity [J].
Carollo, R. A. ;
Aveline, D. C. ;
Rhyno, B. ;
Vishveshwara, S. ;
Lannert, C. ;
Murphree, J. D. ;
Elliott, E. R. ;
Williams, J. R. ;
Thompson, R. J. ;
Lundblad, N. .
NATURE, 2022, 606 (7913) :281-+
[10]   All-optical runaway evaporation to Bose-Einstein condensation [J].
Clement, J. -F. ;
Brantut, J. -P. ;
Robert-de-Saint-Vincent, M. ;
Nyman, R. A. ;
Aspect, A. ;
Bourdel, T. ;
Bouyer, P. .
PHYSICAL REVIEW A, 2009, 79 (06)