Rare earth nanomaterials in electrochemical reduction of carbon dioxide

被引:20
作者
Xue, Yingshan [1 ]
Wang, Ping [1 ]
He, Miao [1 ]
Zhang, Tianbao [1 ]
Yang, Cheng [1 ]
Li, Zhenxing [1 ]
机构
[1] China Univ Petr, Coll New Energy & Mat, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
关键词
Carbon dioxide electrochemical reduction; reaction; Rare -earth -based nanomaterial; C -C coupling; Active site; Copper -based catalyst; SINGLE-ATOM CATALYSTS; CO2; ELECTROREDUCTION; ACTIVE-SITES; CU; SELECTIVITY; HYDROCARBONS; CONVERSION; SURFACE; CERIA;
D O I
10.1016/j.ccr.2024.215983
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
With the requirements of high current, long -chain carbon, and higher Faraday efficiency, the electrochemical reduction of carbon dioxide by traditional Cu -based catalysts has certain limitations in kinetics. In contrast, the catalysts containing rare earth elements have the characteristics of multiple valence states and 4 f orbitals, which can control the bonding of reaction product intermediates to the active sites of catalyst metals. That can reduce the energy barrier and band gap value of the reaction speed control step, and hasten the electron transfer during the carbon dioxide electrochemical reduction reaction, providing a new idea for carbon dioxide electrochemical reduction reaction. In this paper, the reasons and processes of rare earth nanomaterials in carbon dioxide electrochemical reduction from discovery to application are reviewed, the reaction principle for the formation of carbon -containing compounds is discussed in detail, and the incorporation of rare earth elements affects the performance of copper -based catalysts is further discussed. According to the number of carbon -containing atoms, the products are mainly divided into C 1 , C 2 , C 3 , and C 3 + . Finally, this paper retrospects the current application advances of rare -earth -based nanomaterials in carbon dioxide electrochemical reduction reactions. It makes a rational foreground for developing rare -earth -based nanomaterial in carbon dioxide electrochemical reduction reactions.
引用
收藏
页数:14
相关论文
共 107 条
[1]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[2]   Metal-Free and Noble Metal-Free Heteroatom-Doped Nanostructured Carbons as Prospective Sustainable Electrocatalysts [J].
Asefa, Tewodros .
ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (09) :1873-1883
[3]   Dative Epitaxy of Commensurate Monocrystalline Covalent van der Waals Moire Supercrystal [J].
Bian, Mengying ;
Zhu, Liang ;
Wang, Xiao ;
Choi, Junho ;
Chopdekar, Rajesh, V ;
Wei, Sichen ;
Wu, Lishu ;
Huai, Chang ;
Marga, Austin ;
Yang, Qishuo ;
Li, Yuguang C. ;
Yao, Fei ;
Yu, Ting ;
Crooker, Scott A. ;
Cheng, Xuemei M. ;
Sabirianov, Renat F. ;
Zhang, Shengbai ;
Lin, Junhao ;
Hou, Yanglong ;
Zeng, Hao .
ADVANCED MATERIALS, 2022, 34 (17)
[4]   Copper and Copper-Based Bimetallic Catalysts for Carbon Dioxide Electroreduction [J].
Birhanu, Mulatu Kassie ;
Tsai, Meng-Che ;
Kahsay, Amaha Woldu ;
Chen, Chun-Tse ;
Zeleke, Tamene Simachew ;
Ibrahim, Kassa Belay ;
Huang, Chen-Jui ;
Su, Wei-Nien ;
Hwang, Bing-Joe .
ADVANCED MATERIALS INTERFACES, 2018, 5 (24)
[5]   Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV [J].
Calvinho, Karin U. D. ;
Laursen, Anders B. ;
Yap, Kyra M. K. ;
Goetjen, Timothy A. ;
Hwang, Shinjae ;
Murali, Nagarajan ;
Mejia-Sosa, Bryan ;
Lubarski, Alexander ;
Teeluck, Krishani M. ;
Hall, Eugene S. ;
Garfunkel, Eric ;
Greenblatt, Martha ;
Dismukes, G. Charles .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (09) :2550-2559
[6]   Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives [J].
Chang, Bin ;
Pang, Hong ;
Raziq, Fazal ;
Wang, Sibo ;
Huang, Kuo-Wei ;
Ye, Jinhua ;
Zhang, Huabin .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (11) :4714-4758
[7]   Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion [J].
Dai, Yizhou ;
Li, Huan ;
Wang, Chuanhao ;
Xue, Weiqing ;
Zhang, Menglu ;
Zhao, Donghao ;
Xue, Jing ;
Li, Jiawei ;
Luo, Laihao ;
Liu, Chunxiao ;
Li, Xu ;
Cui, Peixin ;
Jiang, Qiu ;
Zheng, Tingting ;
Gu, Songqi ;
Zhang, Yao ;
Xiao, Jianping ;
Xia, Chuan ;
Zeng, Jie .
NATURE COMMUNICATIONS, 2023, 14 (01)
[8]   Revealing the construction of Cu-O-Ce interfacial sites via increased support utilization for enhanced CO2 electroreduction and Li-CO2 batteries [J].
Deng, Qinghua ;
Yang, Yong ;
Zhao, Wentian ;
Tang, Zheng ;
Yin, Kai ;
Song, Youchao ;
Zhang, Yiwei .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 651 :883-893
[9]   First-Principles Insight into Electrocatalytic Reduction of CO2 to CH4 on a Copper Nanoparticle [J].
Dong, Huilong ;
Li, Youyong ;
Jiang, De-en .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (21) :11392-11398
[10]   The Electronic Structure of Lanthanide Impurities in TiO2, ZnO, SnO2, and Related Compounds [J].
Dorenbos, Pieter .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2014, 3 (03) :R19-R24