Quantitative Structure-Activity Relationship Models for the Angiotensin-Converting Enzyme Inhibitory Activities of Short-Chain Peptides of Goat Milk Using Quasi-SMILES

被引:1
作者
Toropova, Alla P. [1 ]
Toropov, Andrey A. [1 ]
Roncaglioni, Alessandra [1 ]
Benfenati, Emilio [1 ]
机构
[1] Ist Ric Farmacolog Mario Negri IRCCS, Dept Environm Hlth Sci, Lab Environm Chem & Toxicol, Via Mario Negri 2, I-20156 Milan, Italy
来源
MACROMOL | 2024年 / 4卷 / 02期
关键词
ACE inhibitory activities; short-chain peptides of goat milk; quasi-SMILES; QSAR; Monte Carlo method; CORAL software; DRUG DESIGN METHODOLOGIES; MONTE-CARLO OPTIMIZATION; ADSORPTION AFFINITY; ECLECTIC DATA; QSAR MODEL; GRAPH; PREDICTION; INDEX; NANOPARTICLES; CYTOTOXICITY;
D O I
10.3390/macromol4020022
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The inhibitory activity of peptides on angiotensin-converting enzyme (ACE) is a measure of their antihypertensive potential. Quantitative structure-activity relationship (QSAR) models obtained based on the analysis of sequences of amino acids are suggested. The average determination coefficient for the active training sets is 0.36 +/- 0.07. The average determination coefficient for validation sets is 0.79 +/- 0.02. The paradoxical situation is caused by applying the vector of ideality of correlation, which improves the statistical quality of a model for the calibration and validation sets but is detrimental to the statistical quality of models for the training sets.
引用
收藏
页码:387 / 400
页数:14
相关论文
共 63 条
[1]   CORAL: Monte Carlo based global QSAR modelling of Bruton tyrosine kinase inhibitors using hybrid descriptors [J].
Ahmadi, S. ;
Lotfi, S. ;
Afshari, S. ;
Kumar, P. ;
Ghasemi, E. .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2021, 32 (12) :1013-1031
[2]   Predictive QSAR modeling for the antioxidant activity of natural compounds derivatives based on Monte Carlo method [J].
Ahmadi, Shahin ;
Ghanbari, Hosein ;
Lotfi, Shahram ;
Azimi, Neda .
MOLECULAR DIVERSITY, 2021, 25 (01) :87-97
[3]   Structure-activity relationship of the radical scavenging activities of some natural antioxidants based on the graph of atomic orbitals [J].
Ahmadi, Shahin ;
Mehrabi, Mehrshad ;
Rezaei, Sahar ;
Mardafkan, Noushin .
JOURNAL OF MOLECULAR STRUCTURE, 2019, 1191 :165-174
[4]   Development of QSAR Model Based on Monte Carlo Optimization for Predicting GABAA Receptor Binding of Newly Emerging Benzodiazepines [J].
Antovic, Aleksandra ;
Karadzic, Radovan ;
Zivkovic, Jelena, V ;
Veselinovic, Aleksandar M. .
ACTA CHIMICA SLOVENICA, 2023, 70 (04) :634-641
[5]   Monte Carlo optimization method based QSAR modeling of postmortem redistribution of structurally diverse drugs [J].
Antovic, Aleksandra R. ;
Karadzic, Radovan ;
Veselinovic, Aleksandar M. .
NEW JOURNAL OF CHEMISTRY, 2022, 46 (30) :14731-14737
[6]   Ligand-based computer-aided pesticide design.: A review of applications of the CoMFA and CoMSIA methodologies [J].
Bordás, B ;
Komíves, T ;
Lopata, A .
PEST MANAGEMENT SCIENCE, 2003, 59 (04) :393-400
[8]   Computing Mixture Adsorption in Porous Materials through Flat Histogram Monte Carlo Methods [J].
Chen, Hsuan-Chu ;
Lin, Li-Chiang .
LANGMUIR, 2023, 39 (43) :15380-15390
[9]   Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency [J].
Chen, Jin ;
Intes, Xavier .
MEDICAL PHYSICS, 2011, 38 (10) :5788-5798
[10]   Monte-Carlo method-based QSAR model to discover phytochemical urease inhibitors using SMILES and GRAPH descriptors [J].
Chopdar, Kumar Sambhav ;
Dash, Ganesh Chandra ;
Mohapatra, Pranab Kishor ;
Nayak, Binata ;
Raval, Mukesh Kumar .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (11) :5090-5099