Auxotrophy-based curation improves the consensus genome-scale metabolic model of yeast

被引:1
作者
Han, Siyu [1 ,2 ]
Wu, Ke [3 ]
Wang, Yonghong [1 ]
Li, Feiran [3 ]
Chen, Yu [2 ]
机构
[1] East China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai 200237, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Synthet Biol, Shenzhen Inst Adv Technol, Key Lab Quantitat Synthet Biol, Shenzhen 518055, Peoples R China
[3] Tsinghua Univ, Inst Biopharmaceut & Hlth Engn, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
关键词
Saccharomyces cerevisiae; Genome-scale metabolic model; Auxotrophy; Flux balance analysis; SERINE O-ACETYLTRANSFERASE; SACCHAROMYCES-CEREVISIAE; CELL-WALL; BIOSYNTHESIS; PATHWAY; GENE; THIAMINE; GROWTH; REDUCTASE; SYSTEMS;
D O I
10.1016/j.synbio.2024.07.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Saccharomyces cerevisiae, a widely utilized model organism, has seen continuous updates to its genome-scale metabolic model (GEM) to enhance the prediction performance for metabolic engineering and systems biology. This study presents an auxotrophy-based curation of the yeast GEM, enabling facile upgrades to yeast GEMs in future endeavors. We illustrated that the curation bolstered the predictive capability of the yeast GEM particularly in predicting auxotrophs without compromising accuracy in other simulations, and thus could be an effective manner for GEM refinement. Last, we leveraged the curated yeast GEM to systematically predict auxotrophs, thereby furnishing a valuable reference for the design of nutrient-dependent cell factories and synthetic yeast consortia.
引用
收藏
页码:861 / 870
页数:10
相关论文
共 83 条
[81]  
Zhang CY, 2023, bioRxiv, DOI [10.1101/2023.12.03.569754, 10.1101/2023.12.03.569754]
[82]   Distributing a metabolic pathway among a microbial consortium enhances production of natural products [J].
Zhou, Kang ;
Qiao, Kangjian ;
Edgar, Steven ;
Stephanopoulos, Gregory .
NATURE BIOTECHNOLOGY, 2015, 33 (04) :377-U157
[83]   Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data [J].
Zomorrodi, Ali R. ;
Maranas, Costas D. .
BMC SYSTEMS BIOLOGY, 2010, 4