Two-dimensional NMR inversion based on fast norm smoothing method

被引:1
作者
Zou, Youlong [1 ]
Li, Jun [1 ]
Hu, Song [1 ]
Su, Junlei [1 ]
Liu, Mi [1 ]
Zhang, Jun [1 ]
机构
[1] SINOPEC, Petr Explorat & Prod Res Inst, Beijing 100083, Peoples R China
来源
ENERGY GEOSCIENCE | 2022年 / 3卷 / 01期
关键词
2D NMR inversion; Norm smoothing; Fast regularization parameter selection; NUCLEAR-MAGNETIC-RESONANCE; EQUATIONS; FLUID;
D O I
10.1016/j.engeos.2021.10.004
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Two-dimensional (2D) nuclear magnetic resonance (NMR) inversion operates with massive echo train data and is an ill-posed problem. It is very important to select a suitable inversion method for the 2D NMR data processing. In this study, we propose a fast, robust, and effective method for 2D NMR inversion that improves the computational efficiency of the inversion process by avoiding estimation of some unneeded regularization parameters. Firstly, a method that combines window averaging (WA) and singular value decomposition (SVD) is used to compress the echo train data and obtain the singular values of the kernel matrix. Subsequently, an optimum regularization parameter in a fast manner using the signal-to-noise ratio (SNR) of the echo train data and the maximum singular value of the kernel matrix are determined. Finally, we use the Butler-Reeds-Dawson (BRD) method and the selected optimum regularization parameter to invert the compressed data to achieve a fast 2D NMR inversion. The numerical simulation results indicate that the proposed method not only achieves satisfactory 2D NMR spectra rapidly from the echo train data of different SNRs but also is insensitive to the number of the final compressed data points. (c) 2021 Sinopec Petroleum Exploration and Production Research Institute. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:23 / 34
页数:12
相关论文
共 29 条
[1]   ESTIMATING SOLUTIONS OF 1ST KIND INTEGRAL-EQUATIONS WITH NONNEGATIVE CONSTRAINTS AND OPTIMAL SMOOTHING [J].
BUTLER, JP ;
REEDS, JA ;
DAWSON, SV .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :381-397
[2]  
Chen S.H., 2009, SOLA 50 ANN LOGG S, P31589
[3]   Efficient Maximum Entropy Reconstruction of Nuclear Magnetic Resonance T1-T2 Spectra [J].
Chouzenoux, Emilie ;
Moussaoui, Said ;
Idier, Jerome ;
Mariette, Francois .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (12) :6040-6051
[4]  
Coates G.R., 1998, LOG ANALYST, V39, P51
[5]  
Coates GR., 1991, SPE 22723, DOI [10.2118/22723-MS, DOI 10.2118/22723-MS]
[6]  
Dunn K.-J., 2002, NUCL MAGNETIC RESONA
[7]  
Dunn K.J., 1994, SPE ANN TECHN C EXH, DOI [10.2118/28367-MS, DOI 10.2118/28367-MS]
[8]   The inversion of NMR log data sets with different measurement errors [J].
Dunn, KJ ;
LaTorraca, GA .
JOURNAL OF MAGNETIC RESONANCE, 1999, 140 (01) :153-161
[9]   QUANTITATIVE 2-DIMENSIONAL TIME CORRELATION RELAXOMETRY [J].
ENGLISH, AE ;
WHITTALL, KP ;
JOY, MLG ;
HENKELMAN, RM .
MAGNETIC RESONANCE IN MEDICINE, 1991, 22 (02) :425-434
[10]   A new NMR method of fluid characterization in reservoir rocks: Experimental confirmation and simulation results [J].
Freedman, R ;
Lo, S ;
Flaum, M ;
Hirasaki, GJ ;
Matteson, A ;
Sezginer, A .
SPE JOURNAL, 2001, 6 (04) :452-464