Certifiable Out-of-Distribution Generalization

被引:0
|
作者
Ye, Nanyang [1 ]
Zhu, Lin [1 ]
Wang, Jia [2 ]
Zeng, Zhaoyu [1 ]
Shao, Jiayao [3 ]
Peng, Chensheng [1 ]
Pan, Bikang [4 ]
Li, Kaican [5 ]
Zhu, Jun [6 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] Univ Cambridge, Cambridge, England
[3] Univ Warwick, Warwick, England
[4] ShanghaiTech Univ, Shanghai, Peoples R China
[5] Huawei Noahs Ark Lab, Hong Kong, Peoples R China
[6] Tsinghua Univ, Beijing, Peoples R China
来源
THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9 | 2023年
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning methods suffer from test-time performance degeneration when faced with out-of-distribution (OoD) data whose distribution is not necessarily the same as training data distribution. Although a plethora of algorithms have been proposed to mitigate this issue, it has been demonstrated that achieving better performance than ERM simultaneously on different types of distributional shift datasets is challenging for existing approaches. Besides, it is unknown how and to what extent these methods work on any OoD datum without theoretical guarantees. In this paper, we propose a certifiable out-of-distribution generalization method that provides provable OoD generalization performance guarantees via a functional optimization framework leveraging random distributions and max-margin learning for each input datum. With this approach, the proposed algorithmic scheme can provide certified accuracy for each input datum's prediction on the semantic space and achieves better performance simultaneously on OoD datasets dominated by correlation shifts or diversity shifts. Our code is available at https://github.com/ZlatanWilliams/StochasticDisturbanceLearning.
引用
收藏
页码:10927 / 10935
页数:9
相关论文
共 50 条
  • [1] Out-of-Distribution Generalization in Kernel Regression
    Canatar, Abdulkadir
    Bordelon, Blake
    Pehlevan, Cengiz
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [2] Causal softmax for out-of-distribution generalization
    Luo, Jing
    Zhao, Wanqing
    Peng, Jinye
    DIGITAL SIGNAL PROCESSING, 2025, 156
  • [3] Out-of-distribution generalization for learning quantum dynamics
    Caro, Matthias C.
    Huang, Hsin-Yuan
    Ezzell, Nicholas
    Gibbs, Joe
    Sornborger, Andrew T.
    Cincio, Lukasz
    Coles, Patrick J.
    Holmes, Zoe
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [4] On the Adversarial Robustness of Out-of-distribution Generalization Models
    Zou, Xin
    Liu, Weiwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [5] On the Out-of-distribution Generalization of Probabilistic Image Modelling
    Zhang, Mingtian
    Zhang, Andi
    McDonagh, Steven
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [6] Assaying Out-Of-Distribution Generalization in Transfer Learning
    Wenzel, Florian
    Dittadi, Andrea
    Gehler, Peter
    Simon-Gabriel, Carl-Johann
    Horn, Max
    Zietlow, Dominik
    Kernert, David
    Russell, Chris
    Brox, Thomas
    Schiele, Bernt
    Scholkopf, Bernhard
    Locatello, Francesco
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] Out-of-distribution Generalization and Its Applications for Multimedia
    Wang, Xin
    Cui, Peng
    Zhu, Wenwu
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5681 - 5682
  • [8] Out-of-Distribution Generalization With Causal Feature Separation
    Wang, Haotian
    Kuang, Kun
    Lan, Long
    Wang, Zige
    Huang, Wanrong
    Wu, Fei
    Yang, Wenjing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1758 - 1772
  • [9] A Stable Vision Transformer for Out-of-Distribution Generalization
    Yu, Haoran
    Liu, Baodi
    Wang, Yingjie
    Zhang, Kai
    Tao, Dapeng
    Liu, Weifeng
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 328 - 339
  • [10] Counterfactual Active Learning for Out-of-Distribution Generalization
    Deng, Xun
    Wang, Wenjie
    Feng, Fuli
    Zhang, Hanwang
    He, Xiangnan
    Liao, Yong
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 11362 - 11377