Deep learning-enhanced prediction of terahertz response of metasurfaces

被引:0
|
作者
Min, Xuetao [1 ]
Hao, Xiaoyuan [1 ]
Chen, Yupeng [1 ]
Liu, Mai [2 ,3 ]
Cheng, Xiaomeng [1 ]
Huang, Wei [1 ]
Li, Yanfeng [2 ,3 ]
Xu, Quan [2 ,3 ]
Zhang, Xueqian [2 ,3 ]
Ye, Miao [1 ]
Han, Jiaguang [1 ,2 ,3 ]
机构
[1] Guilin Univ Elect Technol, Sch Optoelect Engn, Guangxi Key Lab Optoelect Informat Proc, Guilin 541004, Peoples R China
[2] Tianjin Univ, Ctr Terahertz Waves, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Deep learning; Metasurfaces; Terahertz response; PHASE;
D O I
10.1016/j.optlastec.2024.111321
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Metasurfaces offer an exciting opportunity to manipulate electromagnetic waves, presenting vast potential across diverse applications. In this study, we introduce a novel deep learning approach that integrates an Autoencoder with a Multi-Layer Perceptron to effectively forecast the Terahertz (THz) spectral response of metasurfaces. By harnessing a large dataset of training examples, our model adeptly captures the intricate correlation between metasurface structures and their optical responses, circumventing the traditionally time-consuming analysis of complex patterns. This proposed methodology furnishes a valuable tool for examining the THz transmission response of metasurfaces and has the potential to expedite metasurface design processes.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Clinical evaluation of deep learning-enhanced lymphoma pet imaging with accelerated acquisition
    Li, Xu
    Pan, Boyang
    Chen, Congxia
    Yan, Dongyue
    Pan, Zhenglin
    Feng, Tao
    Liu, Hui
    Gong, Nan-Jie
    Liu, Fugeng
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2024, 25 (09):
  • [42] Deep learning-enhanced nuclear medicine SPECT imaging applied to cardiac studies
    Apostolopoulos, Ioannis D.
    Papandrianos, Nikolaos I.
    Feleki, Anna
    Moustakidis, Serafeim
    Papageorgiou, Elpiniki I.
    EJNMMI PHYSICS, 2023, 10 (01)
  • [43] Shopping trip recommendations: A novel deep learning-enhanced global planning approach
    Guo, Jiayi
    He, Jiangning
    Wu, Xinran
    DECISION SUPPORT SYSTEMS, 2024, 182
  • [44] DEEP LEARNING-ENHANCED AUTONOMOUS SUBMARINE IMAGING SYSTEM FOR UNDERWATER BUBBLE DETECTION
    Spanos, S.
    Antoniou, C.
    Vellas, S.
    Ntouskos, V
    Mallios, A.
    Nomikou, P.
    Karantzalos, K.
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 1652 - 1656
  • [45] Deep Learning-Enhanced Nanopore Sensing of Single-Nanoparticle Translocation Dynamics
    Tsutsui, Makusu
    Takaai, Takayuki
    Yokota, Kazumichi
    Kawai, Tomoji
    Washio, Takashi
    SMALL METHODS, 2021, 5 (07)
  • [46] Deep learning-enhanced fluorescence microscopy via confocal physical imaging model
    Zhang, Baoyuan
    Sun, Xuefeng
    Mai, Jialuo
    Wang, Weibo
    OPTICS EXPRESS, 2023, 31 (12) : 19048 - 19064
  • [47] A Deep Learning-Enhanced Compartmental Model and Its Application in Modeling Omicron in China
    Deng, Qi
    Wang, Guifang
    BIOENGINEERING-BASEL, 2024, 11 (09):
  • [48] Machine Learning-Enhanced Prediction of Inorganic Semiconductor Bandgaps for Advancing Optoelectronic Technologies
    Zeb, Muhammad Husnain
    Rehman, Abdul
    Siddiqah, Mariyam
    Bao, Qiaoliang
    Shabbir, Babar
    Kabir, M. Z.
    ADVANCED THEORY AND SIMULATIONS, 2024, 7 (07)
  • [49] Terahertz Metasurface Spectrum Prediction Based On Deep Learning
    Zhou, Jun
    Zhu, Zheng
    Qian, Jiajia
    Ge, Zhenzhen
    Wu, Shuting
    2021 46TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2021,
  • [50] Advances in machine learning-enhanced nanozymes
    Park, Yeong-Seo
    Park, Byeong Uk
    Jeon, Hee-Jae
    FRONTIERS IN CHEMISTRY, 2024, 12