Deep learning-enhanced prediction of terahertz response of metasurfaces

被引:0
|
作者
Min, Xuetao [1 ]
Hao, Xiaoyuan [1 ]
Chen, Yupeng [1 ]
Liu, Mai [2 ,3 ]
Cheng, Xiaomeng [1 ]
Huang, Wei [1 ]
Li, Yanfeng [2 ,3 ]
Xu, Quan [2 ,3 ]
Zhang, Xueqian [2 ,3 ]
Ye, Miao [1 ]
Han, Jiaguang [1 ,2 ,3 ]
机构
[1] Guilin Univ Elect Technol, Sch Optoelect Engn, Guangxi Key Lab Optoelect Informat Proc, Guilin 541004, Peoples R China
[2] Tianjin Univ, Ctr Terahertz Waves, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Deep learning; Metasurfaces; Terahertz response; PHASE;
D O I
10.1016/j.optlastec.2024.111321
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Metasurfaces offer an exciting opportunity to manipulate electromagnetic waves, presenting vast potential across diverse applications. In this study, we introduce a novel deep learning approach that integrates an Autoencoder with a Multi-Layer Perceptron to effectively forecast the Terahertz (THz) spectral response of metasurfaces. By harnessing a large dataset of training examples, our model adeptly captures the intricate correlation between metasurface structures and their optical responses, circumventing the traditionally time-consuming analysis of complex patterns. This proposed methodology furnishes a valuable tool for examining the THz transmission response of metasurfaces and has the potential to expedite metasurface design processes.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space
    Khalil, Mudassir
    Sharif, Muhammad Imran
    Naeem, Ahmed
    Chaudhry, Muhammad Umar
    Rauf, Hafiz Tayyab
    Ragab, Adham E.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 2031 - 2047
  • [22] Deep Learning-Enhanced Qualitative Microwave Imaging: Rationale and Initial Assessment
    Yago, Alvaro
    Cavagnaro, Marta
    Crocco, Lorenzo
    2021 15TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2021,
  • [23] Deep Learning-Enhanced Autoencoder for Multi-Carrier Wireless Systems
    Aziz, Md Abdul
    Rahman, Md Habibur
    Tabassum, Rana
    Sejan, Mohammad Abrar Shakil
    Baek, Myung-Sun
    Song, Hyoung-Kyu
    MATHEMATICS, 2024, 12 (23)
  • [24] Deep learning-enhanced light-field imaging with continuous validation
    Nils Wagner
    Fynn Beuttenmueller
    Nils Norlin
    Jakob Gierten
    Juan Carlos Boffi
    Joachim Wittbrodt
    Martin Weigert
    Lars Hufnagel
    Robert Prevedel
    Anna Kreshuk
    Nature Methods, 2021, 18 : 557 - 563
  • [25] Deep Learning-Enhanced Potentiometric Aptasensing with Magneto-Controlled Sensors
    Mou, Junsong
    Ding, Jiawang
    Qin, Wei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (03)
  • [26] Deep learning-enhanced snapshot hyperspectral confocal microscopy imaging system
    Liu, Shuai
    Zou, Wenzhen
    Sha, Hao
    Feng, Xiaochen
    Chen, Bin
    Zhang, Jian
    Han, Sanyang
    Li, Xiu
    Zhang, Yongbing
    OPTICS EXPRESS, 2024, 32 (08) : 13918 - 13931
  • [27] Advanced Heart Disease Prediction: Deep Learning-Enhanced Convolutional Neural Network in the Internet of Medical Things Environment
    Karandikar, Aarti
    Jaisinghani, Komal
    Ingole, Piyush K.
    Shelke, Nilesh
    Fadnavis, Rupa A.
    Narawade, Navnath
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (01) : 1 - 10
  • [28] An Ensemble Learning-Enhanced Smart Prediction Model for Financial Credit Risks
    Zhang, Li
    Wang, Lin
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (07)
  • [29] Deep Learning-Enhanced Jewelry Material Jadeite Jade Quality Assessment
    Meng, Liang
    Effendi, Raja Ahmad Azmeer Raja Ahmad
    Sun, Wei
    Mo, Lili
    Rahman, Ahmad Rizal Abdul
    Hsu, Yu-Lin
    Barron, Deirdre
    JOM, 2025, 77 (01) : 211 - 224
  • [30] Deep learning-enhanced light-field imaging with continuous validation
    Wagner, Nils
    Beuttenmueller, Fynn
    Norlin, Nils
    Gierten, Jakob
    Boffi, Juan Carlos
    Wittbrodt, Joachim
    Weigert, Martin
    Hufnagel, Lars
    Prevedel, Robert
    Kreshuk, Anna
    NATURE METHODS, 2021, 18 (05) : 557 - +