Rigidity properties of p-biharmonic maps and p-biharmonic submanifolds

被引:1
作者
Barker, W. [1 ]
Dung, N. T. [2 ]
Seo, K. [3 ]
Tuyen, N. D. [4 ]
机构
[1] Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
[2] Vietnam Natl Univ, Univ Sci, Fac Math Mech Informat, Hanoi, Vietnam
[3] Sookmyung Womens Univ, Dept Math, Cheongpa Ro 47 Gil 100, Seoul 04310, South Korea
[4] Hanoi Univ Civil Engn, Dept Math, Hanoi, Vietnam
基金
新加坡国家研究基金会;
关键词
p-Biharmonic maps; p-Biharmonic submanifolds; Chen's conjecture; Minimal submanifolds; IMMERSED SUBMANIFOLDS; HYPERSURFACES;
D O I
10.1016/j.jmaa.2024.128310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give some rigidity properties of a p-biharmonic map u :(M, g) -> (N, h) between Riemannian manifolds (M-n, g) and (N-m, h). We first provide various sufficient conditions for p-biharmonic maps to be harmonic. Moreover, when the map u is an isometric immersion, by assuming that the L-n/2-norm of the sectional curvature on M is sufficiently small or if the fundamental tone of the p-biharmonic submanifold is sufficiently big, it is proved that M is minimal. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 32 条
[1]   Biharmonic properly immersed submanifolds in Euclidean spaces [J].
Akutagawa, Kazuo ;
Maeta, Shun .
GEOMETRIAE DEDICATA, 2013, 164 (01) :351-355
[2]   Biharmonic hypersurfaces in 4-dimensional space forms [J].
Balmus, Adina ;
Montaldo, Stefano ;
Oniciuc, Cezar .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (12) :1696-1705
[3]  
Besse ArthurL., 1987, ERGEBNISSE MATH IHRE, V10
[4]   Biharmonic submanifolds of S3 [J].
Caddeo, R ;
Montaldo, S ;
Oniciuc, C .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (08) :867-876
[5]   Biharmonic submanifolds in spheres [J].
Caddeo, R ;
Montaldo, S ;
Oniciuc, C .
ISRAEL JOURNAL OF MATHEMATICS, 2002, 130 (1) :109-123
[6]  
Caddeo R., 2001, Contemp. Math., V288, P286
[7]   ON p-BIHARMONIC SUBMANIFOLDS IN NONPOSITIVELY CURVED MANIFOLDS [J].
Cao, Xiangzhi ;
Luo, Yong .
KODAI MATHEMATICAL JOURNAL, 2016, 39 (03) :567-578
[8]  
Chen B.Y., 1991, Soochow J. Math, V17, P169
[9]  
Chen B.Y., 1996, SOOCHOW J MATH, V22, P117
[10]   Biharmonic ideal hypersurfaces in Euclidean spaces [J].
Chen, Bang-Yen ;
Munteanu, Marian Ioan .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (01) :1-16