A stabilization-free hybrid virtual element formulation for the accurate analysis of 2D elasto-plastic problems

被引:8
作者
Liguori, F. S. [1 ]
Madeo, A. [1 ]
Marfia, S. [2 ]
Garcea, G. [1 ]
Sacco, E. [3 ]
机构
[1] Univ Calabria, DIMES, Ponte P Bucci Arcavacata, CS, Italy
[2] Roma Tre Univ, DICITA, Via Vito Volterra 62, Rome, RM, Italy
[3] Univ Naples Federico II, DiSt, Via Claudio 21, Naples, NA, Italy
关键词
Virtual Element Method; Hybrid finite element; Polygonal elements; Divergence free; Stabilization free; Elasto-plasticity; MEMBRANE FINITE-ELEMENT; DRILLING ROTATIONS; MESH;
D O I
10.1016/j.cma.2024.117281
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A plasticity formulation for the Hybrid Virtual Element Method (HVEM) is presented. The main features include the use of an energy norm for the VE projection, a high-order divergence-free interpolation for stresses and a piecewise constant interpolation for plastic multipliers within element subdomains. The HVEM does not require any stabilization term, unlike classical VEM formulations which are affected by the choice of stabilization parameters. The algorithmic tangent matrix is derived consistently and analytically. A standard strain-driven formulation and a Backward-Euler time integration scheme are adopted. The return mapping process for the stress evaluation is formulated at the element level to preserve the stress interpolation as plasticity evolves. Even though general constitutive laws can be readily considered, to test the robustness of HVEM, an elastic-perfectly plastic behavior is adopted. In such a case, the return mapping process is efficiently solved using a Sequential Quadratic Programming Algorithm. The solution is free from volumetric locking and from spurious hardening effects that are observed in stabilized VEM. The numerical results confirm the accuracy of HVEM for rough meshes and high rate of convergence in recovering the collapse load.
引用
收藏
页数:22
相关论文
共 45 条
[1]   Virtual elements for finite thermo-plasticity problems [J].
Aldakheel, Fadi ;
Hudobivnik, Blaz ;
Wriggers, Peter .
COMPUTATIONAL MECHANICS, 2019, 64 (05) :1347-1360
[2]   VEM-based tracking algorithm for cohesive/frictional 2D fracture [J].
Artioli, E. ;
Marfia, S. ;
Sacco, E. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 365
[3]   Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem [J].
Artioli, E. ;
da Veiga, L. Beirao ;
Lovadina, C. ;
Sacco, E. .
COMPUTATIONAL MECHANICS, 2017, 60 (04) :643-657
[4]   Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem [J].
Artioli, E. ;
da Veiga, L. Beirao ;
Lovadina, C. ;
Sacco, E. .
COMPUTATIONAL MECHANICS, 2017, 60 (03) :355-377
[5]  
Artioli E., 2017, Comput. Mech., DOI [10.1007/s00466--017--1429--9, DOI 10.1007/S00466--017--1429--9]
[6]   The virtual element method [J].
Beirao Da Veiga, Lourenco ;
Brezzi, Franco ;
Marini, L. Donatella ;
Russo, Alessandro .
ACTA NUMERICA, 2023, 32 :123-202
[7]   A guide to the finite and virtual element methods for elasticity [J].
Berbatov, K. ;
Lazarov, B. S. ;
Jivkov, A. P. .
APPLIED NUMERICAL MATHEMATICS, 2021, 169 :351-395
[8]   Three field finite elements for the elastoplastic analysis of 2D continua [J].
Bilotta, Antonio ;
Leonetti, Leonardo ;
Garcea, Giovanni .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2011, 47 (10) :1119-1130
[9]   A lowest order stabilization-free mixed Virtual Element Method [J].
Borio, Andrea ;
Lovadina, Carlo ;
Marcon, Francesca ;
Visinoni, Michele .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 160 :161-170
[10]   8-and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes [J].
Cen, Song ;
Fu, Xiang-Rong ;
Zhou, Ming-Jue .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (29-32) :2321-2336