Geometry of the parabolic subset of generically immersed 3-manifolds in R4

被引:0
|
作者
Nabarro, A. C. [1 ]
Fuster, M. C. Romero [2 ]
Zanardo, M. C. [1 ]
机构
[1] Ave Trabalhador Sao Carlense,400 Ctr, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Valencia, Dept Matemat, Burjassot 46100, Valencia, Spain
基金
巴西圣保罗研究基金会;
关键词
Parabolic surface of 3-manifolds in R-4; Height functions; Geometrical characterizations for local singularities; CONTACT; SURFACES;
D O I
10.1007/s40687-024-00450-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The parabolic subset of a 3-manifold generically immersed in R-4 is a surface. We analyze in this study the generic geometrical behavior of such surface, considered as a submanifold of R-4. Typical Singularity Theory techniques based on the analysis of the family of height functions are applied in order to describe the geometrical characterizations of different singularity types.
引用
收藏
页数:17
相关论文
共 9 条
  • [1] Geometrical characterizations of singularities of the Gauss map on generically immersed 3-manifolds in R4
    Nabarro, Ana Claudia
    Romero-Fuster, Maria del Carmen
    Zanardo, Maria Carolina
    JOURNAL OF GEOMETRY, 2025, 116 (01)
  • [2] Generic Geometry of Stable Maps of 3-Manifolds into R4
    Casonatto, C.
    Fuster, M. C. Romero
    Atique, R. Wik
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (03): : 547 - 561
  • [3] Geometry of the parabolic subset of generically immersed 3-manifolds in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4$$\end{document}
    A. C. Nabarro
    M. C. Romero Fuster
    M. C. Zanardo
    Research in the Mathematical Sciences, 2024, 11 (2)
  • [4] Self-conjugate vectors of immersed 3-manifolds in R6
    Dreibelbis, Daniel
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (02) : 450 - 456
  • [5] Existence of immersed spheres minimizing curvature functionals in compact 3-manifolds
    Kuwert, Ernst
    Mondino, Andrea
    Schygulla, Johannes
    MATHEMATISCHE ANNALEN, 2014, 359 (1-2) : 379 - 425
  • [6] Singular 3-manifolds in R5
    Riul, Pedro Benedini
    Soares Ruas, Maria Aparecida
    Sacramento, Andrea de Jesus
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [7] ON 4-DIMENSIONAL 2-HANDLEBODIES AND 3-MANIFOLDS
    Bobtcheva, Ivelina
    Piergallini, Riccardo
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (12)
  • [8] The dual tree of a fold map germ from R3 to R4
    Moya-Perez, J. A.
    Nuno-Ballesteros, J. J.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (03) : 958 - 977
  • [9] Complete 3-dimensional λ-translators in the Euclidean space R4
    Li, Zhi
    Wei, Guoxin
    Chen, Gangyi
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2024, 16 (01) : 71 - 124