Injective dimension of cofinite modules and local cohomology

被引:0
|
作者
Asghari, Fardin [1 ]
Naghipour, Reza [1 ]
Sedghi, Monireh [2 ]
机构
[1] Univ Tabriz, Dept Math, Tabriz, Iran
[2] Azarbijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Bass number; Cofinite module; Cohen-Macaulay; Injective dimension; Local cohomology; Projective dimension; FINITENESS PROPERTIES; DUALITY;
D O I
10.1007/s13398-024-01610-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R, m) be a commutative Noetherian local ring, I an ideal of R and let M be a non-zero I -cofinite R-module. In this paper we show that if M has finite injective dimension, then dim R/I <= inj dim M <= depth R; and inj dim M = depth R, whenever mM not equal M. These generalize the classical Bass formulas for injective dimension. As an application we obtain some results on the injective dimension of local cohomology modules. In addition, we show that R is a Cohen-Macaulay ring if admits a Cohen-Macaulay R-module of finite projective dimension.
引用
收藏
页数:13
相关论文
共 50 条