Large Deviations for the Ground State of Weakly Interacting Bose Gases

被引:0
作者
Rademacher, Simone [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Math, Theresienstr 39, D-80333 Munich, Germany
来源
ANNALES HENRI POINCARE | 2024年
关键词
CENTRAL-LIMIT-THEOREM; EXCITATION SPECTRUM; BOSONS;
D O I
10.1007/s00023-024-01463-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the ground state of a Bose gas of N particles on the three-dimensional unit torus in the mean-field regime that is known to exhibit Bose-Einstein condensation. Bounded one-particle operators with law given through the interacting Bose gas' ground state correspond to dependent random variables due to the bosons' correlation. We prove that in the limit N ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \rightarrow \infty $$\end{document} bounded one-particle operators with law given by the ground state satisfy large deviation estimates. We derive a lower and an upper bound on the rate function that match up to second order and that are characterized by quantum fluctuations around the condensate.
引用
收藏
页码:1239 / 1289
页数:51
相关论文
共 24 条
  • [1] A Central Limit Theorem in Many-Body Quantum Dynamics
    Ben Arous, Gerard
    Kirkpatrick, Kay
    Schlein, Benjamin
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 321 (02) : 371 - 417
  • [2] Optimal Rate for Bose-Einstein Condensation in the Gross-Pitaevskii Regime
    Boccato, Chiara
    Brennecke, Christian
    Cenatiempo, Serena
    Schlein, Benjamin
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) : 1311 - 1395
  • [3] Bogoliubov theory in the Gross-Pitaevskii limit
    Boccato, Chiara
    Brennecke, Christian
    Cenatiempo, Serena
    Schlein, Benjamin
    [J]. ACTA MATHEMATICA, 2019, 222 (02) : 219 - 335
  • [4] Bossmann L, 2022, Arxiv, DOI arXiv:2208.00199
  • [5] Asymptotic expansion of low-energy excitations for weakly interacting bosons
    Bossmann, Lea
    Petrat, Soeren
    Seiringer, Robert
    [J]. FORUM OF MATHEMATICS SIGMA, 2021, 9
  • [6] Bose-Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross-Pitaevskii Regime
    Brennecke, Christian
    Schlein, Benjamin
    Schraven, Severin
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2022, 25 (02)
  • [7] GROSS-PITAEVSKII DYNAMICS FOR BOSE-EINSTEIN CONDENSATES
    Brennecke, Christian
    Schlein, Benjamin
    [J]. ANALYSIS & PDE, 2019, 12 (06): : 1513 - 1596
  • [8] Multivariate Central Limit Theorem in Quantum Dynamics
    Buchholz, Simon
    Saffirio, Chiara
    Schlein, Benjamin
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (1-2) : 113 - 152
  • [9] Excitation Spectrum of Interacting Bosons in the Mean-Field Infinite-Volume Limit
    Derezinski, Jan
    Napiorkowski, Marcin
    [J]. ANNALES HENRI POINCARE, 2014, 15 (12): : 2409 - 2439
  • [10] The Excitation Spectrum for Weakly Interacting Bosons in a Trap
    Grech, Philip
    Seiringer, Robert
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (02) : 559 - 591