Fault Diagnosis of Rotating Machinery Bearings Based on Multi-Scale Attention Feature Fusion under Few Shot and Complex Working Conditions

被引:0
|
作者
Rong, Ye [1 ,2 ]
Guo, Dongmei [3 ]
Kong, Qingyi [4 ,5 ]
Wang, Guanglong [6 ]
Ren, Zhixin [7 ]
Tian, Zihao [7 ]
机构
[1] Army Engn Univ PLA, Hebei 050005, Peoples R China
[2] Hebei Commun Vocat & Tech Coll, Shijiazhuang 050035, Hebei, Peoples R China
[3] Hebei Jiaotong Vocat & Tech Coll, Shijiazhuang 050035, Hebei, Peoples R China
[4] Hebei Jiaotong Vocat & Tech Coll, Shijiazhuang 050035, Hebei, Peoples R China
[5] Hebei Kingston Technol Co Ltd, Xinji 052360, Hebei, Peoples R China
[6] Army Engn Univ PLA, Shijiazhuang 050005, Hebei, Peoples R China
[7] Hebei Jiaotong Vocat & Tech Coll, Shijiazhuang 050035, Hebei, Peoples R China
关键词
bearing; fault diagnosis; few-shot learning; MSFF; complex working conditions;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accidents caused by failures in rotating machinery bearings have heightened attention in bearing failure diagnosis. Scholars have explored methods to build fault diagnosis models to tackle the challenge of creating diagnostic models with few bearing failure samples available. However, many diagnostic models may suffer from overfitting issues under insufficient samples, affecting fault diagnosis performance. Additionally, rotating machinery operates under changing, complex conditions and noise interference, further deteriorating the effectiveness of fault diagnosis. This paper proposes a fault diagnosis model based on multi -scale attentional feature fusion (FD-MSAFF) to address the issue above. This model comprises a multi -scale feature extraction module, an attentional feature fusion module, and an MMD-based weighted prototype network. The FD-MSAFF model improves few -shot learning by using its multiscale feature extraction and depth -wise separable attention modules to blend multi -scale features effectively with contextual information. It also tackles classification issues in few -shot sizes with its MMD-weighted prototype network, which is less susceptible to noise. Simulated tests under complex scenarios, such as changing conditions, noise variations, cross -bearing conditions, and comparisons with other algorithms, have proven the FD-MSAFF model's superior accuracy and generalization in diagnosing bearing faults in rotating machinery.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 50 条
  • [1] Fault diagnosis of rotating machinery based on residual neural network with multi-scale feature fusion
    基于多尺度特征融合残差神经网络的旋转机械故障诊断
    Hao, Rujiang; Hao, Rujiang, 1600, Chinese Vibration Engineering Society (40): : 22 - 28
  • [2] Attention Enhanced Multi-Scale Feature Map Fusion Few Shot Learning
    Feng, Xiaopeng
    Han, Liang
    Tao, Pin
    Jiang, Yusheng
    2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 352 - 356
  • [4] Few-shot based learning recaptured image detection with multi-scale feature fusion and attention☆
    Hussain, Israr
    Tan, Shunquan
    Huang, Jiwu
    PATTERN RECOGNITION, 2025, 161
  • [5] Fault Diagnosis Method for Rotating Machinery Based on Multi-scale Features
    Ruijun Liang
    Wenfeng Ran
    Yao Chen
    Rupeng Zhu
    Chinese Journal of Mechanical Engineering, 36
  • [6] Fault Diagnosis Method for Rotating Machinery Based on Multi-scale Features
    Liang, Ruijun
    Ran, Wenfeng
    Chen, Yao
    Zhu, Rupeng
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2023, 36 (01)
  • [7] Fault diagnosis method for rotating machinery based on fine composite multi-scale divergence entropy under time-varying working conditions
    Lu T.
    Ma H.
    Wang X.
    Chen G.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (21): : 211 - 218
  • [8] Feature Space Transformation for Fault Diagnosis of Rotating Machinery under Different Working Conditions
    Jang, Gye-Bong
    Cho, Sung-Bae
    SENSORS, 2021, 21 (04) : 1 - 18
  • [9] COMPOSITE FAULT DIAGNOSIS IN ROTATING MACHINERY BASED ON MULTI-FEATURE FUSION
    Su, Nai-quan
    Zhang, Qing-hua
    Chen, Yi-dian
    Chang, Xiao-xiao
    Liu, Yang
    TRANSACTIONS OF FAMENA, 2024, 48 (01) : 87 - 96
  • [10] Domain contrastive-based prototype discriminant network for few-shot rotating machinery fault diagnosis under variable working conditions
    Hu, Junwei
    Sun, Heyang
    Li, Yang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)