ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS

被引:1
作者
Maulana, Fariz [1 ]
Aditya, Muhammad Zulfikar [1 ]
Suwastika, Erma [1 ]
Muchtadi-Alamsyah, Intan [1 ]
Alimon, Nur Idayu
Sarmin, Nor Haniza
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Jl Ganesha 10, Bandung 40132, Indonesia
来源
JOURNAL OF APPLIED MATHEMATICS & INFORMATICS | 2024年 / 42卷 / 03期
关键词
Wiener index; hyper-wiener index; Harary index; edge-Wiener index; first Zagreb index; second Zagreb index; Gutman index; zero divisor graph;
D O I
10.14317/jami.2024.663
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The zero divisor graph is the most basic way of representing an algebraic structure as a graph. For any commutative ring R, each element is a vertex on the zero divisor graph and two vertices are defined as adjacent if and only if the product of those vertices equals zero. In this research, we determine some topological indices such as the Wiener index, the edgeWiener index, the hyper -Wiener index, the Harary index, the first Zagreb index, the second Zagreb index, and the Gutman index of zero divisor graph of integers modulo prime power and its direct product.
引用
收藏
页码:663 / 680
页数:18
相关论文
共 50 条
  • [31] Central sets and radii of the zero-divisor graphs of commutative rings
    Redmond, Shane P.
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (07) : 2389 - 2401
  • [32] Independent domination polynomial of zero-divisor graphs of commutative rings
    Necla Kırcalı Gürsoy
    Alper Ülker
    Arif Gürsoy
    Soft Computing, 2022, 26 : 6989 - 6997
  • [33] On locating numbers and codes of zero divisor graphs associated with commutative rings
    Raja, Rameez
    Pirzada, S.
    Redmond, Shane
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (01)
  • [34] L(2,1)-labeling of some zero-divisor graphs associated with commutative rings
    Ali, Annayat
    Raja, Rameez
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (02) : 355 - 369
  • [35] Toroidal zero-divisor graphs of decomposable commutative rings without identity
    Kalaimurugan, G.
    Vignesh, P.
    Chelvam, T. Tamizh
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 807 - 829
  • [36] When metric and upper dimensions differ in zero divisor graphs of commutative rings
    Redmond, Shane
    Szabo, Steve
    DISCRETE MATHEMATICS LETTERS, 2021, 5 : 34 - 40
  • [37] Distances in zero-divisor and total graphs from commutative rings A survey
    Chelvam, T. Tamizh
    Asir, T.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (03) : 290 - 298
  • [38] CUT-SETS IN ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE RINGS
    Cote, B.
    Ewing, C.
    Huhn, M.
    Plaut, C. M.
    Weber, D.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (08) : 2849 - 2861
  • [39] Toroidal zero-divisor graphs of decomposable commutative rings without identity
    G. Kalaimurugan
    P. Vignesh
    T. Tamizh Chelvam
    Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 807 - 829
  • [40] Zero-divisor graphs of polynomials and power series over commutative rings
    Axtell, M
    Coykendall, J
    Stickles, J
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (06) : 2043 - 2050