ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS

被引:0
|
作者
Maulana, Fariz [1 ]
Aditya, Muhammad Zulfikar [1 ]
Suwastika, Erma [1 ]
Muchtadi-Alamsyah, Intan [1 ]
Alimon, Nur Idayu
Sarmin, Nor Haniza
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Jl Ganesha 10, Bandung 40132, Indonesia
来源
JOURNAL OF APPLIED MATHEMATICS & INFORMATICS | 2024年 / 42卷 / 03期
关键词
Wiener index; hyper-wiener index; Harary index; edge-Wiener index; first Zagreb index; second Zagreb index; Gutman index; zero divisor graph;
D O I
10.14317/jami.2024.663
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The zero divisor graph is the most basic way of representing an algebraic structure as a graph. For any commutative ring R, each element is a vertex on the zero divisor graph and two vertices are defined as adjacent if and only if the product of those vertices equals zero. In this research, we determine some topological indices such as the Wiener index, the edgeWiener index, the hyper -Wiener index, the Harary index, the first Zagreb index, the second Zagreb index, and the Gutman index of zero divisor graph of integers modulo prime power and its direct product.
引用
收藏
页码:663 / 680
页数:18
相关论文
共 50 条
  • [21] CUT VERTICES IN ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE RINGS
    Axtell, M.
    Baeth, N.
    Stickles, J.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (06) : 2179 - 2188
  • [22] On locating numbers and codes of zero divisor graphs associated with commutative rings
    Raja, Rameez
    Pirzada, S.
    Redmond, Shane
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (01)
  • [23] Independent domination polynomial of zero-divisor graphs of commutative rings
    Gursoy, Necla Kircali
    Ulker, Alper
    Gursoy, Arif
    SOFT COMPUTING, 2022, 26 (15) : 6989 - 6997
  • [24] Upper dimension and bases of zero-divisor graphs of commutative rings
    Pirzada, S.
    Aijaz, M.
    Redmond, S. P.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 168 - 173
  • [25] Independent domination polynomial of zero-divisor graphs of commutative rings
    Necla Kırcalı Gürsoy
    Alper Ülker
    Arif Gürsoy
    Soft Computing, 2022, 26 : 6989 - 6997
  • [26] Central sets and radii of the zero-divisor graphs of commutative rings
    Redmond, Shane P.
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (07) : 2389 - 2401
  • [27] On some topological indices of zero divisor graphs of direct product of three finite fields
    Gaded, Subhash Mallinath
    Narayana, Nithya Sai
    EXAMPLES AND COUNTEREXAMPLES, 2024, 5
  • [28] Quasi-Zero-Divisor Graphs of Non-Commutative Rings
    Shouxiang ZHAO
    Jizhu NAN
    Gaohua TANG
    JournalofMathematicalResearchwithApplications, 2017, 37 (02) : 137 - 147
  • [29] Metric and upper dimension of zero divisor graphs associated to commutative rings
    Pirzada, S.
    Aijaz, M.
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2020, 12 (01) : 84 - 101
  • [30] ON COMPRESSED ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE LOCAL RINGS
    Zhuravlev, E., V
    Filina, O. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 (02): : 1531 - 1555