Morphological, structural, and electronic properties of green synthesized ZnO nanoparticles by experimental and DFT plus U method - A review

被引:3
作者
Saw, Satish [1 ]
Mahto, Sunil [2 ]
Chandra, Navin [1 ]
机构
[1] VBU, Univ Dept Phys, Hazaribagh, Jharkhand, India
[2] VBU, Univ Dept Chem, Hazaribagh, Jharkhand, India
关键词
Zinc oxide nanoparticles; Green method; DFT; Structural and electronic properties; ZINC-OXIDE; PHOTOCATALYTIC PERFORMANCE; OPTICAL-PROPERTIES; 1ST PRINCIPLES; THIN-FILMS; 1ST-PRINCIPLES; NANOSTRUCTURES; PRECIPITATION; SURFACE; NANOCOMPOSITES;
D O I
10.1016/j.physleta.2024.129697
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In these decades, researchers have paid much attention to green synthesis methods because of their low cost and eco-friendliness. Among all other semiconductors, ZnO nanoparticles have huge applications in optoelectronics devices, solar cells, photocatalysis, transistors, etc. This review article explains the green synthesis methods and factors affecting the morphology of ZnO nanoparticles. The morphology shows different structures such as nanowires, cubic, hexagonal, flower-like structures, etc. The XPS peaks Zn-2p1/2, Zn-2p3/2, and O-1S suggest that the synthesized nanoparticles are ZnO. The theoretical review part explains the electronic and structural properties of wurtzite ZnO nanoparticles. The implementation of the Hubbard-U scheme in the d and p shells using Local Density Approximation (LDA) and Generalized Gradient Approximation (GGA) shows the drastic change in the electronic and structural properties of ZnO nanoparticles. The optimized lattice parameters and band gap using Hubbard parameters by different DFT codes are tabulated. Also, we compared computational and experimental results.
引用
收藏
页数:9
相关论文
共 88 条
[1]  
Abdol Aziz R. A., 2019, Key Engineering Materials, V797, P262, DOI [10.4028/www.scientific.net/kem.797.262, 10.4028/www.scientific.net/KEM.797.262]
[2]  
Agarwal Happy, 2017, Resource-Efficient Technologies, V3, P406, DOI [10.18799/24056529/2017/4/163, 10.1016/j.reffit.2017.03.002, 10.1016/j.reffit.2017.03.002]
[3]   XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods [J].
Al-Gaashani, R. ;
Radiman, S. ;
Daud, A. R. ;
Tabet, N. ;
Al-Douri, Y. .
CERAMICS INTERNATIONAL, 2013, 39 (03) :2283-2292
[4]   Synthesis, Characterization, and Photocatalytic Performance of ZnO-Graphene Nanocomposites: A Review [J].
Albiter, Elim ;
Merlano, Aura S. ;
Rojas, Elizabeth ;
Barrera-Andrade, Jose M. ;
Salazar, Angel ;
Valenzuela, Miguel A. .
JOURNAL OF COMPOSITES SCIENCE, 2021, 5 (01)
[5]   Mechanochemical synthesis of zinc oxide nanocrystalline [J].
Ao, Weiqin ;
Li, Junqin ;
Yang, Huaming ;
Zeng, Xierong ;
Ma, Xiaocui .
POWDER TECHNOLOGY, 2006, 168 (03) :148-151
[6]   Hydrothermal synthesis of zinc oxide powders with different morphologies [J].
Chen, DR ;
Jiao, XL ;
Cheng, G .
SOLID STATE COMMUNICATIONS, 1999, 113 (06) :363-366
[7]   Room-temperature ferromagnetic Co-doped ZnO nanoneedle array prepared by pulsed laser deposition [J].
Chen, JJ ;
Yu, MH ;
Zhou, WL ;
Sun, K ;
Wang, LM .
APPLIED PHYSICS LETTERS, 2005, 87 (17) :1-3
[8]   Intrinsic defects in ZnO calculated by screened exchange and hybrid density functionals [J].
Clark, S. J. ;
Robertson, J. ;
Lany, S. ;
Zunger, A. .
PHYSICAL REVIEW B, 2010, 81 (11)
[9]   Green synthesis and characterization of nanostructured ZnO thin films using Citrus aurantifolia (lemon) peel extract by spin-coating method [J].
Colak, Hakan ;
Karakose, Ercan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 690 :658-662
[10]   Zinc oxide: hydrothermal growth of nano- and bulk crystals and their luminescent properties [J].
Dem'yanets, LN ;
Li, LE ;
Uvarova, TG .
JOURNAL OF MATERIALS SCIENCE, 2006, 41 (05) :1439-1444