No Prejudice! Fair Federated Graph Neural Networks for Personalized Recommendation

被引:0
|
作者
Agrawal, Nimesh [1 ]
Sirohi, Anuj Kumar [2 ]
Kumar, Sandeep [1 ,2 ]
Jayadeva [1 ,2 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Delhi, India
[2] Indian Inst Technol, Yardi Sch Artificial Intelligence, Delhi, India
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensuring fairness in Recommendation Systems (RSs) across demographic groups is critical due to the increased integration of RSs in applications such as personalized healthcare, finance, and e-commerce. Graph-based RSs play a crucial role in capturing intricate higher-order interactions among entities. However, integrating these graph models into the Federated Learning (FL) paradigm with fairness constraints poses formidable challenges as this requires access to the entire interaction graph and sensitive user information (such as gender, age, etc.) at the central server. This paper addresses the pervasive issue of inherent bias within RSs for different demographic groups without compromising the privacy of sensitive user attributes in FL environment with the graph-based model. To address the group bias, we propose F2PGNN (Fair Federated Personalized Graph Neural Network), a novel framework that leverages the power of Personalized Graph Neural Network (GNN) coupled with fairness considerations. Additionally, we use differential privacy techniques to fortify privacy protection. Experimental evaluation on three publicly available datasets showcases the efficacy of F2PGNN in mitigating group unfairness by 47% similar to 99% compared to the state-of-the-art while preserving privacy and maintaining the utility. The results validate the significance of our framework in achieving equitable and personalized recommendations using GNN within the FL landscape. Source code is at: https://github.com/nimeshagrawal/F2PGNN-AAAI24
引用
收藏
页码:10775 / 10783
页数:9
相关论文
共 50 条
  • [31] Separated Graph Neural Networks for Recommendation Systems
    Sun, Jianwen
    Gao, Lu
    Shen, Xiaoxuan
    Liu, Sannyuya
    Liang, Ruxia
    Du, Shangheng
    Liu, Shengyingjie
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (01) : 382 - 393
  • [32] Hybrid music recommendation with graph neural networks
    Bevec, Matej
    Tkalcic, Marko
    Pesek, Matevz
    USER MODELING AND USER-ADAPTED INTERACTION, 2024, 34 (05) : 1891 - 1928
  • [33] Multicommunity Graph Convolution Networks with Decision Fusion for Personalized Recommendation
    Liu, Shenghao
    Wang, Bang
    Liu, Bin
    Yang, Laurence T.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2022, PT III, 2022, 13282 : 16 - 28
  • [34] Graph-based Recommendation using Graph Neural Networks
    Dossena, Marco
    Irwin, Christopher
    Portinale, Luigi
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1769 - 1774
  • [35] Personalized Citation Recommendation via Convolutional Neural Networks
    Yin, Jun
    Li, Xiaoming
    WEB AND BIG DATA, APWEB-WAIM 2017, PT II, 2017, 10367 : 285 - 293
  • [36] FedHGN: A Federated Framework for Heterogeneous Graph Neural Networks
    Fu, Xinyu
    King, Irwin
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 3705 - 3713
  • [37] FairAGG: Toward Fair Graph Neural Networks via Fair Aggregation
    Zhu, Yuchang
    Li, Jintang
    Chen, Liang
    Zheng, Zibin
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (05) : 1 - 12
  • [38] Federated Graph Neural Networks: Overview, Techniques, and Challenges
    Liu, Rui
    Xing, Pengwei
    Deng, Zichao
    Li, Anran
    Guan, Cuntai
    Yu, Han
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 17
  • [39] A Federated Learning Approach for Graph Convolutional Neural Networks
    Campbell, Andrew
    Liu, Hang
    Scaglione, Anna
    Wu, Tong
    2024 IEEE 13RD SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, SAM 2024, 2024,
  • [40] Region-aware neural graph collaborative filtering for personalized recommendation
    Li, Shengwen
    Chen, Renyao
    Sun, Chenpeng
    Yao, Hong
    Cheng, Xuyang
    Li, Zhuoru
    Li, Tailong
    Kang, Xiaojun
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2022, 15 (01) : 1446 - 1462