MUSE observations of small-scale heating events

被引:1
作者
Breu, C. A. [1 ]
De Moortel, I [1 ,2 ]
Testa, P. [3 ]
机构
[1] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
[2] Univ Oslo, Rosseland Ctr Solar Phys, POB 1029 Blindern, NO-0315 Oslo, Norway
[3] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02193 USA
基金
英国科学技术设施理事会;
关键词
MHD; Sun: corona; Sun: magnetic fields; Sun: UV radiation; DRIVEN VORTEX FLOWS; MAGNETIC-FIELD; ACTIVE-REGION; ATOMIC DATABASE; HOT PLASMA; SOLAR; RESOLUTION; EMISSION; ENERGY; CHROMOSPHERE;
D O I
10.1093/mnras/stae1126
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Constraining the processes that drive coronal heating from observations is a difficult task due to the complexity of the solar atmosphere. As upcoming missions such as the Multi-slit Solar Explorer (MUSE) will provide coronal observations with unprecedented spatial and temporal resolution, numerical simulations are becoming increasingly realistic. Despite the availability of synthetic observations from numerical models, line-of-sight effects and the complexity of the magnetic topology in a realistic set-up still complicate the prediction of signatures for specific heating processes. 3D magnetohydrodynamic (MHD) simulations have shown that a significant part of the Poynting flux injected into the solar atmosphere is carried by small-scale motions, such as vortices driven by rotational flows inside intergranular lanes. MHD waves excited by these vortices have been suggested to play an important role in the energy transfer between different atmospheric layers. Using synthetic spectroscopic data generated from a coronal loop model incorporating realistic driving by magnetoconvection, we study whether signatures of energy transport by vortices and eventual dissipation can be identified with future missions such as MUSE.
引用
收藏
页码:1671 / 1684
页数:14
相关论文
共 44 条
[21]   CHIANTI - an atomic database for emission lines .1. Wavelengths greater than 50 angstrom [J].
Dere, KP ;
Landi, E ;
Mason, HE ;
Fossi, BCM ;
Young, PR .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1997, 125 (01) :149-173
[22]   Identifying Alfvén wave modes in the solar corona [J].
Enerhaug, E. ;
Howson, T. A. ;
De Moortel, I. .
ASTRONOMY & ASTROPHYSICS, 2024, 681
[23]   Stirring the base of the solar wind: On heat transfer and vortex formation [J].
Finley, A. J. ;
Brun, A. S. ;
Carlsson, M. ;
Szydlarski, M. ;
Hansteen, V ;
Shoda, M. .
ASTRONOMY & ASTROPHYSICS, 2022, 665
[24]   Magnetic Tornado Properties: A Substantial Contribution to the Solar Coronal Heating via Efficient Energy Transfer [J].
Kuniyoshi, Hidetaka ;
Shoda, Munehito ;
Iijima, Haruhisa ;
Yokoyama, Takaaki .
ASTROPHYSICAL JOURNAL, 2023, 949 (01)
[25]   Mapping the Magnetic Field of Flare Coronal Loops [J].
Kuridze, D. ;
Mathioudakis, M. ;
Morgan, H. ;
Oliver, R. ;
Kleint, L. ;
Zaqarashvili, T., V ;
Reid, A. ;
Koza, J. ;
Lofdahl, M. G. ;
Hillberg, T. ;
Kukhianidze, V ;
Hanslmeier, A. .
ASTROPHYSICAL JOURNAL, 2019, 874 (02)
[26]   Evidence of ubiquitous Alfven pulses transporting energy from the photosphere to the upper chromosphere [J].
Liu, Jiajia ;
Nelson, Chris J. ;
Snow, Ben ;
Wang, Yuming ;
Erdelyi, Robert .
NATURE COMMUNICATIONS, 2019, 10
[27]   THE VELOCITY DIFFERENTIAL EMISSION MEASURE - DIAGNOSTIC OF BULK PLASMA MOTION IN SOLAR-FLARES [J].
NEWTON, EK ;
EMSLIE, AG ;
MARISKA, JT .
ASTROPHYSICAL JOURNAL, 1995, 447 (02) :915-922
[28]   Forward modeling of the corona of the sun and solar-like stars:: From a three-dimensional magnetohydrodynamic model to synthetic extreme-ultraviolet spectra [J].
Peter, H ;
Gudiksen, BV ;
Nordlund, Å .
ASTROPHYSICAL JOURNAL, 2006, 638 (02) :1086-1100
[29]   Coronal Loops: Observations and Modeling of Confined Plasma [J].
Reale, Fabio .
LIVING REVIEWS IN SOLAR PHYSICS, 2014, 11 (04)
[30]   EVIDENCE OF WIDESPREAD HOT PLASMA IN A NONFLARING CORONAL ACTIVE REGION FROM HINODE/X-RAY TELESCOPE [J].
Reale, Fabio ;
Testa, Paola ;
Klimchuk, James A. ;
Parenti, Susanna .
ASTROPHYSICAL JOURNAL, 2009, 698 (01) :756-765