Few-shot object detection: Research advances and challenges

被引:10
|
作者
Xin, Zhimeng [1 ]
Chen, Shiming [2 ]
Wu, Tianxu [2 ]
Shao, Yuanjie [2 ]
Ding, Weiping [3 ]
You, Xinge [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
[3] Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
关键词
Object detection; Few-shot learning; Transfer learning; NETWORK;
D O I
10.1016/j.inffus.2024.102307
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection as a subfield within computer vision has achieved remarkable progress, which aims to accurately identify and locate a specific object from images or videos. Such methods rely on large-scale labeled training samples for each object category to ensure accurate detection, but obtaining extensive annotated data is a labor-intensive and expensive process in many real -world scenarios. To tackle this challenge, researchers have explored few -shot object detection (FSOD) that combines few -shot learning and object detection techniques to rapidly adapt to novel objects with limited annotated samples. This paper presents a comprehensive survey to review the significant advancements in the field of FSOD in recent years and summarize the existing challenges and solutions. Specifically, we first introduce the background and definition of FSOD to emphasize potential value in advancing the field of computer vision. We then propose a novel FSOD taxonomy method and survey the plentifully remarkable FSOD algorithms based on this fact to report a comprehensive overview that facilitates a deeper understanding of the FSOD problem and the development of innovative solutions. Finally, we discuss the advantages and limitations of these algorithms to summarize the challenges, potential research direction, and development trend of object detection in the data scarcity scenario.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Temporal Speciation Network for Few-Shot Object Detection
    Zhao, Xiaowei
    Liu, Xianglong
    Ma, Yuqing
    Bai, Shihao
    Shen, Yifan
    Hao, Zeyu
    Liu, Aishan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8267 - 8278
  • [32] Orthogonal Progressive Network for Few-shot Object Detection
    Wang, Bingxin
    Yu, Dehong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 264
  • [33] Generalized Few-Shot Object Detection without Forgetting
    Fan, Zhibo
    Ma, Yuchen
    Li, Zeming
    Sun, Jian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4525 - 4534
  • [34] Open-World Few-Shot Object Detection
    Chen, Wei
    Zhang, Shengchuan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 556 - 567
  • [35] Few-Shot Object Detection on Remote Sensing Images
    Li, Xiang
    Deng, Jingyu
    Fang, Yi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [36] Few-Shot Object Detection via Metric Learning
    Zhu Min
    Zhang Chongyang
    FOURTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2021), 2022, 12084
  • [37] Multiple knowledge embedding for few-shot object detection
    Gong, Xiaolin
    Cai, Youpeng
    Wang, Jian
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (05) : 2231 - 2240
  • [38] Explicit Margin Equilibrium for Few-Shot Object Detection
    Liu, Chang
    Li, Bohao
    Shi, Mengnan
    Chen, Xiaozhong
    Ye, Qixiang
    Ji, Xiangyang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [39] Restoring Negative Information in Few-Shot Object Detection
    Yang, Yukuan
    Wei, Fangyun
    Shi, Miaojing
    Li, Guoqi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [40] Few-Shot Object Detection via Knowledge Transfer
    Kim, Geonuk
    Jung, Hong-Gyu
    Lee, Seong-Whan
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3564 - 3569