Biogas Cleaning via Vacuum Swing Adsorption Using a Calcium Metal-Organic Framework Adsorbent: A Multiscale Simulation Study

被引:0
作者
Lasich, Madison [1 ]
Adeleke, Victoria T. [1 ]
Tumba, Kaniki [1 ,2 ]
机构
[1] Mangosuthu Univ Technol, Dept Chem Engn, Thermodynam Mat Separat Res Grp, ZA-4031 Umlazi, South Africa
[2] Univ Officielle Bukavu, Sch Mines, Karhale Campus,POB 570, Bukavu, DEM REP CONGO
基金
新加坡国家研究基金会;
关键词
vacuum swing adsorption; multiscale modelling; biogas; metal-organic frameworks; steam reforming; CARBON-DIOXIDE; CU-BTC; COORDINATION POLYMER; HYDROGEN-STORAGE; CO2; ADSORPTION; SITES; SEPARATION; PERFORMANCE; H-2; DYNAMICS;
D O I
10.3390/chemengineering8030062
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Purifying biogas can enhance the performance of distributed smart grid systems while potentially yielding clean feedstock for downstream usage such as steam reforming. Recently, a novel anion-pillared metal-organic framework (MOF) was reported in the literature that shows good capacity to separate acetylene from carbon dioxide. The present study assesses the usefulness of this adsorbent for separating a typical biogas mixture (consisting of methane, nitrogen, oxygen, hydrogen, carbon dioxide, and hydrogen sulphide) using a multiscale approach. This approach couples atomistic Monte Carlo simulations in the grand canonical ensemble with the batch equilibrium modelling of a pressure swing adsorption system. The metal-organic framework displays selectivity at low pressures for carbon dioxide and especially hydrogen sulphide. An analysis of adsorption isotherm models coupled with statistical distributions of surface-gas interaction energies determined that both CH4 and CO2 exhibited Langmuir-type adsorption, while H2S displayed Langmuir-type behaviour at low pressures, with increasing adsorption site heterogeneity at high pressures. Batch equilibrium modelling of a vacuum swing adsorption system to purify a CH4/CO2 feedstock demonstrated that such a system can be incorporated into a solar biogas reforming process since the target purity of 93-94 mol-% methane for incorporation into the process was readily achievable.
引用
收藏
页数:24
相关论文
共 96 条
  • [1] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [2] Allen M. P., 1987, Clarendon-0.12
  • [3] Ultra-Tuning of the Rare-Earth fcu-MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins
    Assen, Ayalew H.
    Belmabkhout, Youssef
    Adil, Karim
    Bhatt, Prashant M.
    Xue, Dong-Xu
    Jiang, Hao
    Eddaoudi, Mohamed
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (48) : 14353 - 14358
  • [4] Do New MOFs Perform Better for CO2 Capture and H2 Purification? Computational Screening of the Updated MOF Database
    Avci, Gokay
    Erucar, Ilknur
    Keskin, Seda
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (37) : 41567 - 41579
  • [5] Carborane-based metal-organic frameworks as highly selective sorbents for CO2 over methane
    Bae, Youn-Sang
    Farha, Omar K.
    Spokoyny, Alexander M.
    Mirkin, Chad A.
    Hupp, Joseph T.
    Snurr, Randall Q.
    [J]. CHEMICAL COMMUNICATIONS, 2008, (35) : 4135 - 4137
  • [6] Bao Z., 2018, ANGEW CHEM, V130, P16252, DOI DOI 10.1002/ange.201808716
  • [7] Bhoyate S., 2019, SPR Nanoscience, V5, P1, DOI [10.1039/9781788013871-00001, DOI 10.1039/9781788013871-00001]
  • [8] BIOVIA Dassault Systemes, 2019, Materials Studio 2020
  • [9] Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites
    Britt, David
    Furukawa, Hiroyasu
    Wang, Bo
    Glover, T. Grant
    Yaghi, Omar M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (49) : 20637 - 20640
  • [10] Caetano Bryan Castro, 2022, Energy Conversion and Management: X, DOI 10.1016/j.ecmx.2022.100224