Fatigue behavior under variable amplitude loadings in AlSi10Mg alloy components produced by laser powder bed fusion

被引:0
|
作者
Fernandes, Rui Filipe [1 ]
de Jesus, Joel [1 ]
Borrego, Luis Pires [1 ,2 ]
Ferreira, Jose Antonio [1 ]
Branco, Ricardo [1 ]
Costa, Jose Domingos [1 ]
机构
[1] Univ Coimbra, Dept Mech Engn, CEMMPRE, ARISE, Rua Luis Reis Santos, P-3030788 Coimbra, Portugal
[2] Polytech Inst Coimbra, Coimbra Inst Engn, Dept Mech Engn, Coimbra, Portugal
关键词
AlSi10Mg; fatigue behavior; laser powder bed fusion; notch; variable amplitude loading; MECHANICAL-PROPERTIES; WELDED-JOINTS; STRESS; MICROSTRUCTURE; CONSTANT;
D O I
10.1111/ffe.14396
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study investigates the fatigue behavior of AlSi10Mg alloy manufactured via laser powder bed fusion under variable amplitude loading conditions. Two material conditions were examined: as-built and stress relief, with the later involving a lower temperature compared to the conventional heat treatments, aimed at preventing the Al-Si network rupture. Fatigue tests were conducted using two distinct loading spectra: block loading and random loading. While the stress relief reduced the monotonic properties of the material, it resulted in increased fatigue performance due to the homogenization of residual stress throughout the depth. Fracture surface analysis revealed initiation points on subsurface defects, with both block and random loading cases exhibiting overload markings from loading transitions. The predictive model incorporating crack initiation and propagation periods yielded good results, with the equivalent stress range approach providing higher quality estimation compared to the real stress range approach. Fatigue behavior under variable amplitude loadings of AlSi10Mg is investigated. Stress relief reduced the monotonic properties but enhanced fatigue resistance. Random spectrum exhibited higher fatigue performance due to lower mean stress influence. Crack initiation and propagation periods were predicted using a linear damage rule.
引用
收藏
页码:3930 / 3944
页数:15
相关论文
共 50 条
  • [21] Study of Microstructure and Surface Morphology of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion
    Cui, Lujun
    Liu, Songyang
    Li, Xiaolei
    Wang, Mengle
    Guo, Shirui
    Cui, Yinghao
    Chen, Yongqian
    Liu, Jialin
    Zheng, Bo
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [22] Laser powder bed fusion of AlSi10Mg alloy: Numerical investigation on the temperature field evolution
    Ricci, Sara
    Testa, Gabriel
    Iannitti, Gianluca
    Ruggiero, Andrew
    FORCES IN MECHANICS, 2022, 8
  • [23] Effect of Direct Aging on Corrosion Behavior of AlSi10Mg Alloy Fabricated by Laser Powder Bed Fusion
    Zhen Zhang
    Zhanyong Zhao
    Xiaofeng Li
    Beibei Wang
    Peikang Bai
    Acta Metallurgica Sinica (English Letters), 2024, 37 : 266 - 282
  • [24] Gold plating of AlSi10Mg parts produced by a laser powder-bed fusion additive manufacturing technique
    Inberg, Alexandra
    Ashkenazi, Dana
    Kimmel, Giora
    Shacham-Diamand, Yosi
    Stern, Adin
    PROGRESS IN ADDITIVE MANUFACTURING, 2020, 5 (04) : 395 - 404
  • [25] Fatigue Improvement of AlSi10Mg Fabricated by Laser-Based Powder Bed Fusion through Heat Treatment
    Sajadi, Felix
    Tiemann, Jan-Marc
    Bandari, Nooshin
    Darabi, Ali Cheloee
    Mola, Javad
    Schmauder, Siegfried
    METALS, 2021, 11 (05)
  • [26] On the effects of laser shock peening on fatigue behavior of V-notched AlSi10Mg manufactured by laser powder bed fusion
    Maleki, Erfan
    Bagherifard, Sara
    Unal, Okan
    Bandini, Michele
    Guagliano, Mario
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 163
  • [27] Fatigue response of AlSi10Mg by laser powder bed fusion: influence of build orientation, heat, and surface treatments
    Fini, S.
    Croccolo, D.
    De Agostinis, M.
    Olmi, G.
    Paiardini, L.
    Scapecchi, C.
    Mele, M.
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (02) : 1385 - 1403
  • [28] Study on AlSi10Mg Alloy with Complex Flow Channels by Laser Powder Bed Fusion
    Zhu Xiaogang
    Dong Anping
    Cheng Lingyu
    Sun Jing
    Liu Zhengwu
    Guo Lijie
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (07)
  • [29] On the thermal conductivity of AlSi10Mg and lattice structures made by laser powder bed fusion
    Selo, Richard R. J.
    Catchpole-Smith, Sam
    Maskery, Ian
    Ashcroft, Ian
    Tuck, Christopher
    ADDITIVE MANUFACTURING, 2020, 34 (34)
  • [30] AlSi10Mg/AlN Interface Grain Structure after Laser Powder Bed Fusion
    Pelevin, Ivan A.
    Ozherelkov, Dmitriy Yu.
    Nalivaiko, Anton Yu.
    Bodyakova, Anna I.
    Chernyshikhin, Stanislav V.
    Zotov, Boris O.
    Korshunov, Andrey V.
    Gromov, Alexander A.
    METALS, 2022, 12 (12)