A New Sparse Polynomial GCD by Separating Terms

被引:0
|
作者
Huang, Qiao-Long [1 ]
Monagan, Michael [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan, Peoples R China
[2] Simon Fraser Univ, Dept Math, Burnaby, BC, Canada
基金
国家重点研发计划; 加拿大自然科学与工程研究理事会;
关键词
Polynomial GCD; Sparse Polynomial; Kronecker Substitution; GREATEST COMMON DIVISORS; EUCLIDS ALGORITHM;
D O I
10.1145/3666000.3669684
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new sparse GCD algorithm for multivariate polynomials over finite fields. Our algorithm uses a new type of substitution to recover the terms of the GCD in batches. We present a detailed complexity analysis and experimental results which show that our algorithm is faster than Zippel's GCD algorithm and competitive with the Monagan-Hu GCD algorithm.
引用
收藏
页码:134 / 142
页数:9
相关论文
共 50 条
  • [31] SPARSE LOGICAL TERMS
    FALL, A
    APPLIED MATHEMATICS LETTERS, 1995, 8 (05) : 11 - 15
  • [32] DEFECTS AND REVISIONS OF ASYMPTOTICALLY FAST ALGORITHM FOR POLYNOMIAL GCD'S
    衷仁保
    ScienceBulletin, 1985, (02) : 170 - 171
  • [33] Approximate polynomial gcd: Small degree and small height perturbations
    von zur Gathen, Joachim
    Mignotte, Maurice
    Shparlinski, Igor E.
    JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (08) : 879 - 886
  • [34] Separating Polynomial χ-Boundedness from χ-Boundedness
    Brianski, Marcin
    Davies, James
    Walczak, Bartosz
    COMBINATORICA, 2024, 44 (01) : 1 - 8
  • [35] Approximate polynomial gcd: Small degree and small height perturbations
    von zur Catheni, Joachim
    Shparlinski, Igor E.
    LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 276 - +
  • [36] The Polynomial Euclidean Algorithm and the Linear Equation AX + BY = gcd(A, B)
    Gove Effinger
    Gary L. Mullen
    The Mathematical Intelligencer, 2017, 39 : 22 - 25
  • [37] On the GCD-s of k consecutive terms of Lucas sequences
    Hajdu, L.
    Szikszai, M.
    JOURNAL OF NUMBER THEORY, 2012, 132 (12) : 3056 - 3069
  • [38] A fully Bayesian sparse polynomial chaos expansion approach with joint priors on the coefficients and global selection of terms
    Buerkner, Paul-Christian
    Kroeker, Ilja
    Oladyshkin, Sergey
    Nowak, Wolfgang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 488
  • [39] The Polynomial Euclidean Algorithm and the Linear Equation AX plus BY = gcd(A, B)
    Effinger, Gove
    Mullen, Gary L.
    MATHEMATICAL INTELLIGENCER, 2017, 39 (01): : 22 - 25
  • [40] ON THE NUMBER OF TERMS OF A POWER OF A POLYNOMIAL
    SCHINZEL, A
    ACTA ARITHMETICA, 1987, 49 (01) : 55 - 70