A New Sparse Polynomial GCD by Separating Terms

被引:0
|
作者
Huang, Qiao-Long [1 ]
Monagan, Michael [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan, Peoples R China
[2] Simon Fraser Univ, Dept Math, Burnaby, BC, Canada
基金
国家重点研发计划; 加拿大自然科学与工程研究理事会;
关键词
Polynomial GCD; Sparse Polynomial; Kronecker Substitution; GREATEST COMMON DIVISORS; EUCLIDS ALGORITHM;
D O I
10.1145/3666000.3669684
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new sparse GCD algorithm for multivariate polynomials over finite fields. Our algorithm uses a new type of substitution to recover the terms of the GCD in batches. We present a detailed complexity analysis and experimental results which show that our algorithm is faster than Zippel's GCD algorithm and competitive with the Monagan-Hu GCD algorithm.
引用
收藏
页码:134 / 142
页数:9
相关论文
共 50 条
  • [1] A fast parallel sparse polynomial GCD algorithm
    Hu, Jiaxiong
    Monagen, Michael
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 105 : 28 - 63
  • [2] BIT COMPLEXITY OF POLYNOMIAL GCD ON SPARSE REPRESENTATION
    Huang, Qiao-long
    Gao, Xiao-shan
    MATHEMATICS OF COMPUTATION, 2025,
  • [3] A Fast Parallel Sparse Polynomial GCD Algorithm
    Hu, Jiaxiong
    Monagan, Michael
    PROCEEDINGS OF THE 2016 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC 2016), 2016, : 271 - 278
  • [4] Computing Sparse GCD of Multivariate Polynomials via Polynomial Interpolation
    Min Tang
    Bingyu Li
    Zhenbing Zeng
    Journal of Systems Science and Complexity, 2018, 31 : 552 - 568
  • [5] Computing Sparse GCD of Multivariate Polynomials via Polynomial Interpolation
    Tang, Min
    Li, Bingyu
    Zeng, Zhenbing
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2018, 31 (02) : 552 - 568
  • [6] Computing Sparse GCD of Multivariate Polynomials via Polynomial Interpolation
    TANG Min
    LI Bingyu
    ZENG Zhenbing
    JournalofSystemsScience&Complexity, 2018, 31 (02) : 552 - 568
  • [7] Polynomial GCD
    Bruckman, PS
    FIBONACCI QUARTERLY, 1998, 36 (05): : 472 - 472
  • [8] 3 NEW ALGORITHMS FOR MULTIVARIATE POLYNOMIAL GCD
    SASAKI, T
    SUZUKI, M
    JOURNAL OF SYMBOLIC COMPUTATION, 1992, 13 (04) : 395 - 411
  • [9] APPROXIMATE POLYNOMIAL GCD
    Elias, Jan
    Zitko, Jan
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 16, 2013, : 63 - 68
  • [10] NEW LOOK AT CLASSICAL ALGORITHMS FOR POLYNOMIAL RESULTANT AND GCD CALCULATION
    BARNETT, S
    SIAM REVIEW, 1974, 16 (02) : 193 - 206