A hybrid framework for day-ahead electricity spot-price forecasting: A case study in China

被引:1
作者
Huang, Siwan [1 ]
Shi, Jianheng [1 ]
Wang, Baoyue [1 ]
An, Na [2 ]
Li, Li [2 ]
Hou, Xuebing [3 ]
Wang, Chunsen [2 ]
Zhang, Xiandong [3 ]
Wang, Kai [4 ]
Li, Huilin [5 ]
Zhang, Sui [1 ]
Zhong, Ming [2 ]
机构
[1] Huaneng Clean Energy Res Inst, Bldg A,Future Sci Pk, Beijing 102209, Peoples R China
[2] China Huaneng Grp Co Ltd, 6 Fuxingmennei St, Beijing 100031, Peoples R China
[3] Huaneng Shandong Power Generat Co Ltd, Jinan, Shandong, Peoples R China
[4] Huaneng Jiangxi Power Generat Co Ltd, Ganzhou, Jiangxi, Peoples R China
[5] Huaneng Power Int Inc, Shanghai Shidongkou Power Plant 1, Shanghai, Peoples R China
关键词
Electricity price forecasting; Similar day analysis; Feature selection; Optimization algorithm; Deep neural networks; FEATURE-SELECTION; WAVELET TRANSFORM; ARIMA; MARKETS; SEARCH; MODELS; TREES;
D O I
10.1016/j.apenergy.2024.123863
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The electricity price volatility can be aggravated by multiple factors, such as load pattern, line limit, regulations, renewable energy generations, weather conditions and holiday. Due to these complex dynamic characteristics of electricity prices, highly accurate forecasting is quite challenging. Our objective is to provide a hybrid framework to forecast 96-point day-ahead electricity price for the following day. We first conducted a day similarity algorithm (DSA) to construct features from electricity price corresponding to the similar days. A deep neural network (DNN) model was developed from 60 important features, including supply, demand and similar day characteristics, selected by eXtreme Gradient Boosting (XGBoost) algorithm. The hyperparameters were tuned using adaptive TPE (ATPE) method. The framework was validated in the real-world dataset of electricity spot market in Shandong Province in China. The proposed framework had good forecasting performance with the lowest MAE of 0.138, MSE of 0.028, RMSE of 0.166 and U2 of 0.434 in the test set and outperformed the other models significantly. The framework presented a robust methodology for market participants to forecast electricity prices accurately, increase profits and improve decision-making skills.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Day-ahead electricity price forecasting using WT, CLSSVM and EGARCH model
    Zhang, Jinliang
    Tan, Zhongfu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 45 (01) : 362 - 368
  • [32] Explanatory Information Analysis for Day-Ahead Price Forecasting in the Iberian Electricity Market
    Monteiro, Claudio
    Fernandez-Jimenez, L. Alfredo
    Ramirez-Rosado, Ignacio J.
    ENERGIES, 2015, 8 (09) : 10464 - 10486
  • [33] The Importance of Predictor Variables and Feature Selection in Day-ahead Electricity Price Forecasting
    Visser, Lennard
    AlSkaif, Tarek
    van Sark, Wilfried
    2020 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST), 2020,
  • [34] Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models
    Tan, Zhongfu
    Zhang, Jinliang
    Wang, Jianhui
    Xu, Jun
    APPLIED ENERGY, 2010, 87 (11) : 3606 - 3610
  • [35] Investigation of Day-ahead Price Forecasting Models in the Finnish Electricity Market
    Zaroni, Daniel
    Piazzi, Arthur
    Tettamanti, Tamas
    Sleisz, Adam
    ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2020, : 829 - 835
  • [36] Application of bagging in day-ahead electricity price forecasting and factor augmentation
    Ozen, Kadir
    Yildirim, Dilem
    ENERGY ECONOMICS, 2021, 103
  • [37] Simultaneous day-ahead forecasting of electricity price and load in smart grids
    Shayeghi, H.
    Ghasemi, A.
    Moradzadeh, M.
    Nooshyar, M.
    ENERGY CONVERSION AND MANAGEMENT, 2015, 95 : 371 - 384
  • [38] Day-ahead electricity price analysis and forecasting by singular spectrum analysis
    Miranian, Arash
    Abdollahzade, Majid
    Hassani, Hossein
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2013, 7 (04) : 337 - 346
  • [39] Day-ahead price forecasting based on hybrid prediction model
    Olamaee, Javad
    Mohammadi, Mohsen
    Noruzi, Alireza
    Hosseini, Seyed Mohammad Hassan
    COMPLEXITY, 2016, 21 (S2) : 156 - 164
  • [40] A Novel Hybrid Approach Using Wavelet, Firefly Algorithm, and Fuzzy ARTMAP for Day-Ahead Electricity Price Forecasting
    Mandal, Paras
    Ul Haque, Ashraf
    Meng, Julian
    Srivastava, Anurag K.
    Martinez, Ralph
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (02) : 1041 - 1051