Impact of the Copper Second Coordination Sphere on Catalytic Performance and Substrate Specificity of a Bacterial Lytic Polysaccharide Monooxygenase

被引:3
作者
Hall, Kelsi R. [1 ,2 ]
Mollatt, Maja [1 ]
Forsberg, Zarah [1 ]
Golten, Ole [1 ]
Schwaiger, Lorenz [3 ]
Ludwig, Roland [3 ]
Ayuso-Fernandez, Ivan [1 ]
Eijsink, Vincent G. H. [1 ]
Sorlie, Morten [1 ]
机构
[1] Norwegian Univ Life Sci NMBU, Fac Chem Biotechnol & Food Sci, N-1432 As, Norway
[2] Univ Canterbury, Sch Biol Sci, Christchurch 8140, New Zealand
[3] Univ Nat Resources & Life Sci, Inst Food Technol, Dept Food Sci & Technol, A-1190 Vienna, Austria
来源
ACS OMEGA | 2024年 / 9卷 / 21期
基金
欧洲研究理事会;
关键词
CELLOBIOSE DEHYDROGENASE; OXYGEN ACTIVATION; CELLULOSE; DEGRADATION; CLEAVAGE; MECHANISM; INSIGHTS; DEPENDS; CHITIN; SHOWS;
D O I
10.1021/acsomega.4c02666
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides, such as cellulose and chitin, using a single copper cofactor bound in a conserved histidine brace with a more variable second coordination sphere. Cellulose-active LPMOs in the fungal AA9 family and in a subset of bacterial AA10 enzymes contain a His-Gln-Tyr second sphere motif, whereas other cellulose-active AA10s have an Arg-Glu-Phe motif. To shine a light on the impact of this variation, we generated single, double, and triple mutations changing the His(216)-Gln(219)-Tyr(221) motif in cellulose- and chitin-oxidizing MaAA10B toward Arg-Glu-Phe. These mutations generally reduced enzyme performance due to rapid inactivation under turnover conditions, showing that catalytic fine-tuning of the histidine brace is complex and that the roles of these second sphere residues are strongly interconnected. Studies of copper reactivity showed remarkable effects, such as an increase in oxidase activity following the Q219E mutation and a strong dependence of this effect on the presence of Tyr at position 221. In reductant-driven reactions, differences in oxidase activity, which lead to different levels of in situ generated H2O2, correlated with differences in polysaccharide-degrading ability. The single Q219E mutant displayed a marked increase in activity on chitin in both reductant-driven reactions and reactions fueled by exogenously added H2O2. Thus, it seems that the evolution of substrate specificity in LPMOs involves both the extended substrate-binding surface and the second coordination sphere.
引用
收藏
页码:23040 / 23052
页数:13
相关论文
共 69 条
  • [1] Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation
    Agger, Jane W.
    Isaksen, Trine
    Varnai, Aniko
    Vidal-Melgosa, Silvia
    Willats, William G. T.
    Ludwig, Roland
    Horn, Svein J.
    Eijsink, Vincent G. H.
    Westereng, Bjorge
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (17) : 6287 - 6292
  • [2] The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection
    Askarian, Fatemeh
    Uchiyama, Satoshi
    Masson, Helen
    Sorensen, Henrik Vinther
    Golten, Ole
    Bunaes, Anne Cathrine
    Mekasha, Sophanit
    Rohr, Asmund Kjendseth
    Kommedal, Eirik
    Ludviksen, Judith Anita
    Arntzen, Magnus O.
    Schmidt, Benjamin
    Zurich, Raymond H.
    van Sorge, Nina M.
    Eijsink, Vincent G. H.
    Krengel, Ute
    Mollnes, Tom Eirik
    Lewis, Nathan E.
    Nizet, Victor
    Vaaje-Kolstad, Gustav
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [3] Protonation State of an Important Histidine from High Resolution Structures of Lytic Polysaccharide Monooxygenases
    Banerjee, Sanchari
    Muderspach, Sebastian J.
    Tandrup, Tobias
    Frandsen, Kristian Erik Hopfner
    Singh, Raushan K.
    Ipsen, Johan Orskov
    Hernandez-Rollan, Cristina
    Norholm, Morten H. H.
    Bjerrum, Morten J.
    Johansen, Katja Salomon
    Lo Leggio, Leila
    [J]. BIOMOLECULES, 2022, 12 (02)
  • [4] Catalytic Mechanism of Fungal Lytic Polysaccharide Monooxygenases Investigated by First-Principles Calculations
    Bertini, Luca
    Breglia, Raffaella
    Lambrughi, Matteo
    Fantucci, Piercarlo
    De Gioia, Luca
    Borsari, Marco
    Sola, Marco
    Bortolotti, Carlo Augusto
    Bruschi, Maurizio
    [J]. INORGANIC CHEMISTRY, 2018, 57 (01) : 86 - 97
  • [5] Molecular mechanism of the chitinolytic peroxygenase reaction
    Bissaro, Bastien
    Streit, Bennett
    Isaksen, Ingvild
    Eijsink, Vincent G. H.
    Beckham, Gregg T.
    DuBois, Jennifer L.
    Rohr, Asmund K.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (03) : 1504 - 1513
  • [6] Bissaro B, 2017, NAT CHEM BIOL, V13, P1123, DOI [10.1038/NCHEMBIO.2470, 10.1038/nchembio.2470]
  • [7] Scission of Glucosidic Bonds by a Lentinus similis Lytic Polysaccharide Monooxygenases Is Strictly Dependent on H2O2 while the Oxidation of Saccharide Products Depends on O2
    Brander, Soren
    Tokin, Radina
    Ipsen, Johan O.
    Jensen, Poul Erik
    Hernandez-Rollan, Cristina
    Norholm, Morten H. H.
    Lo Leggio, Leila
    Dupree, Paul
    Johansen, Katja S.
    [J]. ACS CATALYSIS, 2021, 11 (22) : 13848 - 13859
  • [8] PURIFICATION AND CHARACTERIZATION OF 2 BETA-1,4-ENDOGLUCANASES FROM THERMOMONOSPORA-FUSCA
    CALZA, RE
    IRWIN, DC
    WILSON, DB
    [J]. BIOCHEMISTRY, 1985, 24 (26) : 7797 - 7804
  • [9] Investigating lytic polysaccharide monooxygenase-assisted wood cell wall degradation with microsensors
    Chang, Hucheng
    Amengual, Neus Gacias
    Botz, Alexander
    Schwaiger, Lorenz
    Kracher, Daniel
    Scheiblbrandner, Stefan
    Csarman, Florian
    Ludwig, Roland
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [10] Courtade G, 2020, P NATL ACAD SCI USA, V117, P19178, DOI [10.1073/pnas.2004277117, 10.1073/pnas.2004277117/-/DCSupplemental]